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Chapter 2: Hypergeometric diagonals

Diag((1 + x1)
b1 · · · (1 + x1 + · · ·+ xN)

bN ) = MFM−1([u] ; [v ] ; (−N)Nt).
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Starting point

Starting point is the main identity from [Abdelaziz, Koutschan, Maillard, 2020]:

3F2

([
2

9
,
5

9
,
8

9

]
;

[
1,

2

3

]
; 27 t

)
= Diag

(
(1− x − y)1/3

1− x − y − z

)
Left-hand side is a generalized hypergeometric function:

3F2

([
2

9
,
5

9
,
8

9

]
;

[
1,

2

3

]
; 27 t

)
:= 1+

40

9
t +

5236

81
t2 + · · ·+ ant

n + · · · .

Right-hand side is the diagonal of an algebraic function:

(1− x − y)1/3

1− x − y − z
= 1+

2

3
x +

2

3
y + z +

10

9
xy +

5

3
xz + · · ·+ 40

9
xyz + · · ·+ 5236

81
x2y2z2 + · · · .
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“Guessing – that’s the important beginning
of solving any problem.”
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Setting

Hypergeometric

Diagonals

P-finite/D-finite

exp(t)

ln(1− t)∑
n

n∑
k=0

(
n

k

)
2(
n +

k
k

)
2

︸
︷︷

︸A
n t n

∑
n

(2n
n

)2
tn

3F2
([

2
9 , 5

9 , 8
9

]
;
[
1, 2

3

]
;t

)

exp(t) +
√
1− t

A sequence (un)n≥0 is P-finite if it
satisfies a linear recurrence with poly-
nomial coefficients:

cr (n)un+r + · · ·+ c0(n)un = 0.

(un)n≥0 is hypergeometric if r = 1.

Let (α)n = α · (α+1) · · · (α+ n− 1).

Then un = (a)n·(b)n
(c)n·n! satisfies

(c + n)(n + 1)un+1 − (a+ n)(b + n)un = 0.
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exp(t) +
√
1− t

A series f (t) ∈ Q[[t]] is D-finite if it
satisfies a linear differential equation
with polynomial coefficients:

pr (t)f
(r)(t) + · · ·+ p0(t)f (t) = 0.

Let (α)n = α · (α+1) · · · (α+ n− 1).

Then 2F1
[
a b
c ; t

]
:=
∑

n≥0
(a)n·(b)n
(c)n·n! t

n

satisfies

t(1−t)f ′′(t)+(c−(a+b+1)t)f ′(t)−abf (t) = 0.
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For a multivariate power series

f (x1, . . . , xn) =
∑

j1,...,jn

fj1,...,jnx
j1
1 · · · x jnn

the diagonal is given by

Diag(f ) =
∑
j

fj ,j ,...,j t
j ∈ Q[[t]].

Diagonals are series which can be
written as diagonals of multivariate
algebraic functions.

Diag
(

1
1−x−y

)
= Diag

∑
i ,j

(i+j
j

)
x iy j =

∑
n

(2n
n

)
tn = (1− 4t)−1/2
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Christol’s Conjecture [Christol, 1986]: Any convergent D-finite power series with
integer coefficients is a diagonal. Specifically: 3F2

(
[19 ,

4
9 ,

5
9 ]; [1,

1
3 ], t

)
∈ Diagonals.
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Main result A: Hypergeometric diagonals

Theorem (Bostan, Y., 2022)

The diagonal of any finite product of algebraic functions of the form

(1− x1 − · · · − xn)
R , R ∈ Q,

is a generalized hypergeometric function with explicitly determined parameters.

This vastly generalizes the main identity in [Abdelaziz, Koutschan, Maillard, 2020].

We also settle down other memberships: E.g. 3F2
(
[14 ,

3
8 ,

7
8 ]; [1,

1
3 ], t

)
∈ Diagonals.

Main observation for the proof:

[xk11 · · · xkNN ](1 + x1)
b1(1 + x1 + x2)

b2 · · · (1 + x1 + · · ·+ xN)
bN

=

(
bN
kN

)(
bN−1 + bN − kN

kN−1

)
· · ·
(
b1 + · · ·+ bN − kN · · · − k2

k1

)
.
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Chapter 3: Dubrovin-Yang-Zagier numbers
and algebraicity of D-finite functions

(an)n≥0 = (1 , −48300 , 7981725900 , −1469166887370000, . . . )

(bn)n≥0 = (1 , −144900 , 88464128725 , −62270073456990000, . . . )

7 / 22
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Origin of an and bn

In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

un−3 + 20
(
4500n2 − 18900n + 19739

)
un−2 + 80352000n(5n − 1)(5n − 2)(5n − 4)un+

+25
(
2592000n4 − 16588800n3 + 39118320n2 − 39189168n + 14092603

)
un−1 = 0,

with initial terms u0 = 1, u1 = −161/(210 · 35) and u2 = 26605753/(223 · 312 · 52).

Problem (Zagier, 2018)

Find (α, β) ∈ Q∗ ×Q∗ such that un · (α)n · (β)n · γn ∈ Z for some γ ∈ Z∗.
(x)n := x · (x + 1) · · · (x + n − 1).

[Yang and Zagier]: an = un · (3/5)n · (4/5)n · (210 · 35 · 54)n ∈ Z,
[Dubrovin and Yang]: bn = un · (2/5)n · (9/10)n · (212 · 35 · 54)n ∈ Z.
“Yang and I found a formula showing that the numbers an are integers [...]”
“Dubrovin and Yang found that the numbers bn are also integral and that in this
case the generating function [...] is actually algebraic!” [Zagier, 2018]

8 / 22

“So this is a very mysterious example”
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Definitions and interactions

Algebraic Hypergeometric

Diagonals

P-finite/D-finite

exp(t)

ln(1− t)√ 1− t +
√ 1 +

t

∑
n

n∑
k=0

(
n

k

)
2(
n +

k
k

)
2

︸
︷︷

︸A
n t n

∑ n
( 2n n
) 2 t

n

exp(t) +
√
1− t

√
1− t

[Abel, 1827]: Algebraic ⊆ D-finite.

[Furstenberg, 1967]:
Algebraic ⊆ Diagonals.

[Singer 1979, 2014]:

D-finite f (t)
?
∈ Algebraic.

[Christol, 1984 and Lipshitz, 1988]:
Diagonals ⊆ D-finite.

[Petkovsek 1992]:

D-finite f (t)
?
∈ Hypergeometric.

[Beukers, Heckman, 1989]:
Algebraic ∩ Hypergeometric.

[Bostan, Lairez, Salvy, 2017]:
Diagonals = Multiple binomial sums.

André-Christol Conjecture [André, 2004]:
D-finite f (t) ∈ Z[[t]] convergent & minimal ODE ordinary in 0 ⇒ f (t) Algebraic 9 / 22
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Main result B: Solving the mystery of an and bn

“Yang and I found a formula showing that the numbers an are integers [...]”
“Dubrovin and Yang found that the numbers bn are also integral and that in this
case the generating function [...] is actually algebraic!”

“My presumed arithmetic intuition [...] was entirely broken” – [Wadim Zudilin]

Problem

Investigate the nature of (an)n≥0, (bn)n≥0 and similar sequences.

Theorem (Bostan, Weil, Y.)

The generating functions of both (an)n≥0 and (bn)n≥0 are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier’s problem: (cn)n≥0, . . . , (in)n≥0 ∈ Z.
10 / 22

“So this is a very
mysterious example.”
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Chapter 4:
On the reduced volume of conformal transformations of tori

10 / 22
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Motivation and Introduction

Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
The model asks to minimize the Willmore energy

W (S) :=

ˆ
S
H2dA, (H is the mean curvature)

over orientable closed surfaces S ⊆ R3 with genus g , area A0 and volume V0.
[Willmore, 1965]: For a torus T = T (R, r) the Willmore energy is:

W (T ) =
π2R2

r
√
R2 − r2

⇝ minimal for R/r =
√
2.

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in R3 of genus g ≥ 1 the Willmore energy is minimal for T√
2.

W (S) is invariant under Möbius transformations ⇒ no uniqueness of the shape.
11 / 22

“Why do all humans have the same
biconcave shaped red blood cells?”
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Main result C: Iso is bijective

In Canham’s model, instead of A0 and V0 rather prescribe the isoperimetric ratio:

ι0 := π1/6
3
√
6V0√
A0

∈ (0, 1].

Question

Is the minimizer of W (S) with prescribed genus g and isoperimetric ratio ι0 unique?

Theorem (Yu, Chen, 21; Melczer, Mezzarobba, 21; Bostan, Y., 22)

The shape of the projection of the Clifford torus to R3 is uniquely determined by ι0.
Thus, if g = 1 and ι30 ∈ [3/(25/4

√
π), 1] then Canham’s model has a unique solution.

12 / 22

“Nature is not generic.”
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Main result C’: Iso is bijective

Proposition (Bostan, Y., 2022)

The surface area
√
2π2A(t2) and volume

√
2π2V (t2) of i(t,0,0)(T√

2) are given by

A(t) =
4
(
1− t2

)
(t2 − 6t + 1)2

· 2F1

[
−1

2 − 1
2

1
;

4t

(1− t)2

]
,

V (t) =
2 (1− t)3

(t2 − 6t + 1)3
· 2F1

[
−3

2 − 3
2

1
;

4t

(1− t)2

]
.

Theorem (Bostan, Y., 2022)

The function Iso(t)2 = 36πV (t2)2

A(t2)3
is increasing on t ∈ (0,

√
2− 1).

13 / 22
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Chapter 5: Computing terms in q-holonomic sequences

210 214 218 222 226 230 234 238

2−6

2−4

2−2

20

22

24

26

28

N

T
im

e
in

se
co
n
d
s

naive: Õ(N)

new: Õ(
√
N)
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Main result D: Sublinear algorithm for q-holonomic sequences

A sequence (un)n≥0 ∈ K is holonomic/P-finite if it satisfies

cr (n)un+r + · · ·+ c0(n)un = 0 n ≥ 0, c0(x), . . . , cr (x) ∈ K[x ].

Theorem (Strassen, 1977; Chudnovsky2, 1988)

Given N ∈ N, one can compute uN in Õ(
√
N) arithmetic operations. Naive: O(N)

A sequence (un(q))n≥0 ∈ K is called q-holonomic if for some q ∈ K it satisfies

cr (q, q
n)un+r + · · ·+ c0(q, q

n)un = 0 n ≥ 0, c0(x , y), . . . , cr (x , y) ∈ K[x , y ].

Theorem (Bostan, Y., 2023)

Given N ∈ N, one can compute uN(q) in Õ(
√
N) arithmetic operations. Naive: O(N)

Idea: For M(x) ∈ K[x ]r×r compute M(qN−1) · · ·M(q)M(1) using baby-steps/giant-steps.
14 / 22
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Application: Evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.

Generically, Horner’s rule needs O(degP) operations.

Our results imply that one can do better for large families of polynomials.

For example, the truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN
2

evaluated at q ∈ K in Õ(
√
N) operations [Nogneng, Schost, 2018], [Bostan, Y., 2023].

Method: ϑN(q) = uN , where un =
∑n

k=0 q
k2

is q-holonomic.

[Bostan, Y., 2023]: Same complexity via unified algorithm for
∏N

i=0(x − ai ), or
q-Hermite polynomials, or

∏∞
i=1(1− x i )3 mod xN , etc.

15 / 22

“Do not waste a factor of two!”
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Chapter 6: Computing terms in polynomial C-finite sequences

 0

 2

 4

 6

 8

 10

 12

 6  8  10  12  14  16  18  20  22  24

B
P
 /

 (
U

R
+

IT
)

log2(N)

r=4,d=2
r=4,d=3
r=4,d=4
r=4,d=5
r=4,d=6
r=4,d=7
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Polynomial C-finite sequences: Example

Fibonacci polynomials: F0(x) = 0,F1(x) = 1 and Fn+2(x) = xFn+1(x) + Fn(x)

F9(x) = 1 + 10x2 + 15x4 + 7x6 + x8 and F10(x) = 5x + 20x3 + 21x5 + 8x7 + x9.

Compute using the definition: Fn+2(x) = xFn+1(x) + Fn(x).

[Folkore]: Use binary powering to compute MN , where Mn(x) =

(
x 1
1 0

)n

:

Mn(x) =

{
Mn/2(x)

2 if n even,

M(x) ·M n−1
2
(x)2 if n odd.

Idea: Write FN(x) = f0 + f1x + · · ·+ fNx
N . Then (fk)k≥0 is P-finite:

fk+2 =
(N + k + 1)(N − k − 1)

4(k + 1)(k + 2)
fk for k ≥ 0,

with (f0, f1) = (1, 0) for odd N and (f0, f1) = (0,N/2) for even N.
16 / 22
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Mn(x) =

{
Mn/2(x)

2 if n even,

M(x) ·M n−1
2
(x)2 if n odd.

Idea: Write FN(x) = f0 + f1x + · · ·+ fNx
N . Then (fk)k≥0 is P-finite:

fk+2 =
(N + k + 1)(N − k − 1)

4(k + 1)(k + 2)
fk for k ≥ 0,

with (f0, f1) = (1, 0) for odd N and (f0, f1) = (0,N/2) for even N.
16 / 22
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Main result E: Beating binary powering

A polynomial C-finite sequence (un(x))n≥0 ∈ K[x ]N satisfies a recurrence

un+r (x) = cr−1(x)un+r−1(x) + · · ·+ c0(x)un(x),

for some polynomials c0(x), . . . , cr−1(x) ∈ K[x ].

Theorem (Bostan, Neiger, Y., 2023)

Given a polynomial C-finite sequence (un(x))n≥0, one can compute uN(x) in O(N)
operations in K.

Corollary

Given a polynomial matrix M(x), one can compute M(x)N in O(N) field operations.

17 / 22

“The development of fast algorithms is slow!”
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Chapter 7:
On the q-analogue of Pólya’s Theorem

17 / 22[Aissen, 1979]
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Main result F: A q-analogue of Pólya’s theorem

Consequence of Pólya’s theorem [Pólya, 1922]:

Theorem (Pólya, 1922)

For admissible n, k , a, b, the function F (x) :=
∑

j≥0

(n+aj
k+bj

)
x j is algebraic over Q(x).

Aissen asked whether a q-analogue holds [Aissen, 1979]. We prove:

Theorem (Bostan, Y., 2022)

For admissible n, k , a, b, the function

F (x , q) :=
∑
j≥0

[
n + aj

k + bj

]
q

x j ∈ C[q][[x ]]

is never algebraic over Q(q, x). If q ∈ C, then F (x , q) is algebraic iff q is root of unity.

un(q) =
[n
k

]
q
:=

[n]q!
[k]q![n−k]q!

, where [n]q! := (1 + q) · · · (1 + q + · · ·+ qn−1).

Idea: It holds that (un(q))n≥0 is q-holonomic. 18 / 22

“In mathematics often
the simplest is the best.”
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Chapter 8:
Representation of sequences as constant terms

n∑
k=0

(
n

k

)2(n + k

k

)2

= ct

[(
(x + y)(z + 1)(x + y + z)(y + x + 1)

xyz

)n]
.

18 / 22
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Main result G: Describing Constant terms ∩ C-finite sequences

A sequence A(n) is a constant term if it can be represented as

A(n) = ct[P(x)nQ(x)],

where P,Q ∈ Q[x±1] are Laurent polynomials in x = (x1, . . . , xd).

Question (Zagier, 2018; Gorodetsky, 2021; Straub, 2022)

Which P-finite sequences are constant terms?
Specifically: Are the Fibonacci numbers a constant term sequence?

Theorem (Bostan, Straub, Y., 2023)

Let A(n) be a C-finite sequence. A(n) is a constant term if and only if it has a
single characteristic root λ and λ ∈ Q.

19 / 22
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Chapter 9: On Rupert’s problem

19 / 22
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Summary and main result H: Deciding Rupertness

Definition

A convex polyhedron P ⊆ R3 is called Rupert if a hole with the shape of a straight
tunnel can be cut into it such that a copy of P can be moved through this hole.

Theorem (Prince Rupert; Nieuwland, 1816; Scriba, 1968; Jerrard, Wetzel, Yuan, 2017)

All Platonic solids are Rupert.

Theorem (Chai, Yuan, Zamfirescu, 18; Hoffmann, 18; Lavau, 19; Steininger, Y. 22)

At least 9 Archimedean solids are Rupert.

[Steininger, Y., 22]: Practical algorithm and proof of algorithmic decidability.

20 / 22

“It shows us ‘what’s out there’.”
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Summary and conclusion

A Diagonals of products of (1− x1 − · · · − xn)
R are hypergeometric functions.

B The generating functions of the Dubrovin-Yang-Zagier numbers are algebraic.

C Iso(t) is a quotient of hypergeometric functions and increasing. Thus the shape of
a projection of the Clifford torus is uniquely determined by its isoperimetric ratio.

D We can compute the N-th term of a q-holonomic sequence faster than previously.

E We can compute the N-th term of a polynomial C-finite sequence faster.

F The q-analogue of Pólya’s theorem holds if and only if q is a root of unity.

G A C-finite sequence is a constant term iff it has 1 characteristic root λ and λ ∈ Q.

H Rupertness is decidable and the truncated icosidodecahedron is Rupert.

21 / 22
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Perspectives and open questions

A? Describe Diagonals among D-finite functions.

B? Given a D-finite function, how to prove or disprove that it is algebraic in practice?

C? Given a D-finite function/P-finite sequence, how to prove that it is increasing?

D? Compute N-th terms in some P-finite sequences faster than in Õ(
√
N) operations.

E? Compute the N-th term of an integer C-finite sequence in O(N) bit complexity.

F? Does there exist a suitable notion of “q-algebraicity”?

G? Describe Constant terms among Diagonals or P-finite sequences.

H? Prove or disprove that the Rhombicosidodecahedron is Rupert.

And many, many more...
22 / 22

“Curiouser and curiouser!”
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Bonus: Definition of pFq and algebraicity

The generalized hypergeometric function with parameters a1, . . . , ap and b1, . . . , bq
is:

pFq([a1, . . . , ap] ; [b1, . . . , bq] ; t) :=
∑
j≥0

(a1)j · · · (ap)j
(b1)j · · · (bq)j

t j

j!
,

where (x)n := x · (x + 1) · · · (x + n − 1) is the rising facorial.

[Fürnsinn, Y., 2023] Can also handle the case: aj , bk ̸∈ Q and aj − bk ∈ Z.

22 / 22
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Bonus: Definition of pFq and algebraicity

Theorem (Christol, 1986 and Beukers, Heckman, 1989)

Assume that the rational parameters {a1, . . . , ap} and {b1, . . . , bp−1, bp = 1} are
disjoint modulo Z. Let N be their common denominator. Then

pFp−1([a1, . . . , ap], [b1, . . . , bp−1]; t) is

algebraic if and only if for all 1 ≤ r < N with gcd(r ,N) = 1 the numbers
{exp(2πiraj), 1 ≤ j ≤ p} and {exp(2πirbj), 1 ≤ j ≤ p} interlace on the unit circle.

globally bounded if and only if for all 1 ≤ r < N with gcd(r ,N) = 1, one
encounters more numbers in {exp(2πiraj), 1 ≤ j ≤ p} than in
{exp(2πirbj), 1 ≤ j ≤ p} when running through the unit circle from 1 to exp(2πi).

[Fürnsinn, Y., 2023] Can also handle the case: aj , bk ̸∈ Q and aj − bk ∈ Z.
22 / 22
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Bonus: DYZ-like numbers

Zagier’s problem

Find (α, β) ∈ Q∗ ×Q∗ such that un · (α)n · (β)n · γn ∈ Z for some γ ∈ Z∗.
(x)n := x · (x + 1) · · · (x + n − 1).

# u v ODE order degree # u v ODE order degree
an 3/5 4/5 2 120 fn 19/60 49/60 4 155520
bn 2/5 9/10 4 120 gn 19/60 59/60 4 46080
cn 1/5 4/5 2 120 hn 29/60 49/60 4 46080
dn 7/30 9/10 4 155520 in 29/60 59/60 4 155520
en 9/10 17/30 4 155520

Theorem (Bostan, Weil, Y., 2023)

The sequences (an)n≥0, (bn)n≥0, (cn)n≥0, . . . , (in)n≥0 are solutions to Zagier’s problem.

Estimates for degrees based on numerical monodromy group computations.
Proof of algebraicity: Done: an, bn, cn. In progress: dn, en, fn, gn, hn, in.

22 / 22
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