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Contents of the thesis Il

Chapter 6: “Beating binary powering for polynomial matrices”, with A. Bostan and
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Chapter 7: “On the g-analogue of Pdlya’s Theorem”, with A. Bostan, 2023.
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Chapter 2: Hypergeometric diagonals

Diag((1 + x1)? - (14 x1 4 - 4+ xn)™) = mFrv_1([u] ; [v]; (=N)V1).
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Diagonals
0000

“Guessing — that's the important beginning
of solving any problem.”

Starting point

m Starting point is the main identity from [Abdelaziz, Koutschan, Maillard, 2020]:

2 58] [, 2] N A e O
3F2(|:9,979:|,|:1,3:|,27t>—Dlag(1_X_y_z

m Left-hand side is a generalized hypergeometric function:

2538 2 40 5236
B (12,28 10,2] o7t ) =1+ e 2202 a4
3 2([97979] ,|:,3:| ' 7t> + 9t+ 81 t* + +apt’ +

m Right-hand side is the diagonal of an algebraic function:

M_1+gx+g —{—Z—{—EX —{—§XZ—{— +iOXZ+ —|—@X2 222+
l—-x—y—2z 3 3y 9 Y 3 9 Y 81 Y '
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P-finite/D-finite

A sequence (up)n>o is P-finite if it
satisfies a linear recurrence with poly-
nomial coefficients:

Diagonals

cr(nupyr + -+ + co(n)u, = 0.

(un)n>0 is hypergeometric if r = 1.

Let (a)p =a-(a+1)---(a+n—1).

n’ b n L
exp(t) +VI—t Then u, = (?Z)”(.n)[ satisfies

(c+n)(n+ Dups1 — (a+ n)(b+ n)u, =0.
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Slya’s theorem Constant terms Rupert’s problem Conclusion

[e]e]

Diagonals

P-finite/D-finite

exp(t) +v1—-t

A series f(t) € Q[t] is D-finite if it
satisfies a linear differential equation
with polynomial coefficients:

p(t)F(2) + -+ po(t)f(t) = 0.

Let (a)p=a-(a+1)---(a+n—1).

Then 2 {acb; t} =2 n>0 %tn

satisfies

t(1—t)f"(t)+(c—(a+b+1)t)f'(t)—abf(t) = 0.
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Setting
P-finite/D-finite For a multivariate power series
f(X17 e 7Xn) - Z f_}l’..')_jnx]j_l Tt X.,I1n
Diagonals J1seeeidn

the diagonal is given by

Diag(f) = Z f}J,..,,jtj € Q[t]-

J

Diagonals are series which can be
written as diagonals of multivariate

exp(t) +v1—t algebraic functions.

Diag <17>1<7y> = Diag}_; ; (i}j>xiyj =>n <2nn>tn = (1—41)71/2
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Diagonals
0000

P-finite/D-finite For a multivariate power series
f(X17"‘7XI1): Z f:ll, ,JnXJl
Diagonals J1seeeifn

the diagonal is given by

Diag(f) = Z fij..jt € Q[t].
J

Diagonals are series which can be
written as diagonals of multivariate
exp(t) +vV1—t algebraic functions.

Christol’s Conjecture [Christol, 1986]: Any convergent D finite power series with
integer coefficients is a diagonal. Specifically: 3F([3 5. 5.2l 11, 3] t) € Diagonals.
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Diagonals

[e]ele] ]
“First guess, then prove.

Main result A: Hypergeometrlc dlagonals All great discoveries were made in this style.”

Theorem (Bostan, Y., 2022)
The diagonal of any finite product of algebraic functions of the form

(l-xi——x)f, ReQ

is a generalized hypergeometric function with explicitly determined parameters.

m This vastly generalizes the main identity in [Abdelaziz, Koutschan, Maillard, 2020].
m We also settle down other memberships: E.g. 3F2([%, %, %]; [1, %], t) € Diagonals.
m Main observation for the proof:

IR x) P (14 30+ x0) P2 (L X1+ -+ x) P

B <bN><bN1—|—bN—kN>“'<b1+"‘—|—b/\/—k1\/---—k2>
kn kn-1 ki '
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DYZ numbers
0000

Chapter 3: Dubrovin-Yang-Zagier numbers
and algebraicity of D-finite functions

= (1, —48300, 7981725900, —1469166887370000, .. .)
= (1, —144900, 88464128725, —62270073456990000, .. .)
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DYZ numbers
0000

Origin of a, and b, “So this is a very mysterious example”

m In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:
up—3+20 (4500n2 —18900n + 19739) up_2 + 80352000n(5n — 1)(5n — 2)(5n — 4)un+
+25 (2592000n4 — 16588800n° + 391183200 — 39189168n + 14092603) up—1 = 0,
with initial terms up = 1, u; = —161/(2%0 . 3%) and uy = 26605753/(223 - 312 . 52).
Problem (Zagier, 2018)

Find (o, 8) € Q* x Q* such that up - (@)n - (8)n - y" € Z for some v € Z*.
(X)n=x-(x+1)---(x+n-1).

m [Yang and Zagier]: 2, = up - (3/5)n- (4/5)n - (21035 .54 ¢ Z,

m [Dubrovin and Yang]: b, = up - (2/5)n - (9/10), - (212 -3%.54)" € Z.

m “Yang and | found a formula showing that the numbers 2, are integers [...]"
“Dubrovin and Yang found that the numbers b, are also integral and that in this

case the generating function [...] is actually algebraic!” [Zagier, 2018] )
8/22
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Definitions and interactions

P-finite/D-finite [Abel, 1827]: Algebraic C D-finite.
[Furstenberg, 1967]:
Algebraic C Diagonals.

Diagonals

[Singer 1979, 2014]:
D-finite (t) ¢ Algebraic.

[Christol, 1984 and Lipshitz, 1988]:
Diagonals C D-finite.

[Petkovsek 1992]:
?
D-finite f(t) € Hypergeometric.

Hypergeometric

[Beukers, Heckman, 1989]:
Algebraic N Hypergeometric.

[Bostan, Lairez, Salvy, 2017]:
Diagonals = Multiple binomial sums.

André-Christol Conjecture [André, 2004]:
D-finite 7(t) € Z[t] convergent & minimal ODE ordinary in 0 = 7(t) Algebraic 9/2



DYZ numbers
000®

“So this is a very
mysterious example.”

Main result B: Solving the mystery of a, and b,

m “Yang and | found a formula showing that the numbers 2, are integers [...]"
“Dubrovin and Yang found that the numbers b, are also integral and that in this
case the generating function [...] is actually algebraic!”

m “My presumed arithmetic intuition [...] was entirely broken” — [Wadim Zudilin]

Investigate the nature of , and similar sequences.

Theorem (Bostan, Weil, Y.)

The generating functions of both and are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier's problem: (¢p)n>0,- - -, (in)n>0 € Z.
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Chapter 4:
On the reduced volume of conformal transformations of tori
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Iso
0®00

“Why do all humans have the same
biconcave shaped red blood cells?”

Motivation and Introduction

m Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
m The model asks to minimize the Willmore energy

W(S) = / H?dA, (H is the mean curvature)
s

over orientable closed surfaces S C R3 with genus g, area Ag and volume V.
m [Willmore, 1965]: For a torus T = T(R, r) the Willmore energy is:

T R2

rv R?2 — r?

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

W(T) = ~ minimal for R/r = /2.

Across all closed surfaces in R3 of genus g > 1 the Willmore energy is minimal for T V3

m W(S) is invariant under M&bius transformations = no uniqueness of the shape.
11/22
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Iso
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Main result C: Iso is bijective “Nature is not generic.”

m In Canham’s model, instead of Ay and Vo rather prescribe the isoperimetric ratio:
L1/6 V0 Vo V6
f

Lo ‘= (0 ].]

Question

Is the minimizer of W(S) with prescribed genus g and isoperimetric ratio ¢ unique?

Theorem (Yu, Chen, 21; Melczer, Mezzarobba, 21; Bostan, Y., 22)

The shape of the projection of the Clifford torus to R3? is uniquely determined by 1g.
Thus, ifg =1 and i € [3/( (25/4\/7),1] then Canham’s model has a unique solution.
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Iso
0000

Main result C’: Iso is bijective

“I could never resist a definite integral.”

Proposition (Bostan, Y., 2022)
The surface area /212 A(t?) and volume /212 V/(t?) of i(t,0,0)(T s3) are given by

a == e )

(12 — 6t +1)? 11—
_ 20—t M3 -3 4t
vie) = (2 — 6t +1)° ZFI[ S (1— t)2]

Theorem (Bostan, Y., 2022)

The function Iso(t)? = 36#%2))32 is increasing on t € (0,+/2 — 1).
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N-th terms
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Chapter 5: Computing terms in g-holonomic sequences

Time in seconds

—— naive: O(N) ||
——new: O(VN) 1

I I I I I I
210 214 218 222 226 230 234 238
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N-th terms
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Main result D: Sublinear algorithm for g-holonomic sequences

m A sequence (up)n>0 € K is holonomic/P-finite if it satisfies

Cr(n)un+r +--- 4+ CO(n)un =0 n=>0, CO(X)7 ceey Cr(X) € K[X]

Theorem (Strassen, 1977; Chudnovsky?, 1988)

Given N € N, one can compute uy in O(v/N) arithmetic operations. Naive: O(N)

m A sequence (un(q))n>0 € K is called g-holonomic if it satisfies

Upir+ -+ u,=0 n>0, co(x.v),...,c(x. v) € K[x. v].

Theorem (Bostan, Y., 2023)

Given N € N, one can compute un(q) in O(v/N) arithmetic operations. Naive: O(N)

Idea: For M(x) € K[x]™*" compute M(gN=1)--- M(q)M(1) using baby-steps/giant-steps.

14/22



N-th terms
00®000

Application: Evaluation of polynomials “Do not waste a factor of two!”

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.
m Generically, Horner's rule needs O(deg P) operations.
m Our results imply that one can do better for large families of polynomials.

m For example, the truncated Jacobi theta function
In() =1+ x+x*+ x4 4 xV

evaluated at g € K in O(v/N) operations [Nogneng, Schost, 2018], [Bostan, Y., 2023].
m Method: Yn(q) = un, where u, =Y 4 q"2 is g-holonomic.

m [Bostan, Y., 2023]: Same complexity via unified algorithm for H,{VZO(X —a'), or
g-Hermite polynomials, or []>2,(1 — x)3 mod xV, etc.
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N-th terms
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Chapter 6: Computing terms in polynomial C-finite sequences
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N-th terms
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Polynomial C-finite sequences: Example

m Fibonacci polynomials: Fo(x) =0, F1(x) = 1 and Fpi2(x) = xFpt1(x) + Fa(x)
Fo(x) = 14 10x? + 15x* + 7x° + x® and Fig(x) = 5x + 20x> + 21x° + 8x" + x°.
m Compute using the definition: F,12(x) = xFn11(x) + Fa(x).

m [Folkore]: Use binary powering to compute My, where M,(x) = <)1< é) :

M, 2(x)? if n even,
Mn(X) = 2 .
M(x) - M%I(X) if n odd.
m ldea: Write Fy(x) = fo + fix + -+ + fyx"N. Then (fc)k>0 is P-finite:
(N+k+1)(N—k-1)
fyan = fr for k>
k2 Hk+1) (ko) M fork=0,

with (o, fi) = (1,0) for odd N and (fy, f1) = (0, N/2) for even N.

16/22
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Main result E: Beating binary pOWering “The development of fast algorithms is slow!”

A polynomial C-finite sequence (u,(x))n>0 € K[x]" satisfies a recurrence
Untr(X) = cr—1(X)tnsr—1(x) + - - + co(x)un(x),
for some polynomials co(x),. .., c,—1(x) € K[x].

Theorem (Bostan, Neiger, Y., 2023)

Given a polynomial C-finite sequence (unp(x))n>0, one can compute uy(x) in O(N)
operations in K.

Corollary

Given a polynomial matrix M(x), one can compute M(x)N in O(N) field operations.

17/22



Pélya's theorem
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Chapter 7:
On the g-analogue of Pélya’s Theorem

Specifically, if n, k, a, b satisfy the conditions stated earlier, is the function

rma= 5 o]

algebraic? That is, does there exist a nonzero polynomial P(x, y, z) whose
coefficients are constants (say, complex numbers) such that P(x, g, F(x, q)) = 0, for

?
all x and ¢ [Aissen, 1979] 115



Pélya's theorem
oce

“In mathematics often
the simplest is the best.”

Main result F: A g-analogue of Pélya's theorem

m Consequence of Pdlya’s theorem [Pdlya, 1922]:
Theorem (Pdlya, 1922)

For admissible n, k, a, b, the function F(x) =3, (Z:t;j)xf is algebraic over Q(x).

m Aissen asked whether a g-analogue holds [Aissen, 1979]. We prove:
Theorem (Bostan, Y., 2022)

For admissible n, k, a, b, the function

n+aj| ;
Fea) =3 |7 T3] 6 e clald
o Lk il
is never algebraic over Q(q, x). If g € C, then F(x, q) is algebraic iff q is root of unity.
n nlq! n—
= un(q) =[], = g where [nlg! = (1+q)--- (14 g+ +g" ).

m ldea: It holds that (us(g))n>0 is g-holonomic. 18)22



Constant terms
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Chapter 8:
Representation of sequences as constant terms

n <n>2<n+k>2 . [((x+)/)(2+1)(x+y+z)()/+x+1)>"} .

Xyz
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Main result G: Describing Constant terms N C-finite sequences

m A sequence A(n) is a if it can be represented as
A(n) = ct[P(x)"Q(x)],

where P, @ € Q[x*!] are Laurent polynomials in x = (xg,...,Xq).

Question (Zagier, 2018; Gorodetsky, 2021; Straub, 2022)

Which P-finite sequences are constant terms?
Specifically: Are the Fibonacci numbers a constant term sequence?

Theorem (Bostan, Straub, Y., 2023)

Let A(n) be a C-finite sequence. A(n) is a if and only if it has a
single characteristic root A\ and \ € Q.

19/22
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Rupert's problem
oe

Summary and main result H: Deciding Rupertness ‘It shows us ‘what's out there

Definition
A convex polyhedron P C R3 is called Rupert if a hole with the shape of a straight
tunnel can be cut into it such that a copy of P can be moved through this hole.

Theorem (Prince Rupert; Nieuwland, 1816; Scriba, 1968; Jerrard, Wetzel, Yuan, 2017)

All Platonic solids are Rupert.

Theorem (Chai, \?uan, Zamfirescu, 18; Hoffmann, 18; Lavau, 19; Steininger, Y. 22

At least 9 Archimedean solids are Rupert.

y
m [Steininger, Y., 22]: Practical algorithm and proof of whmic ity.

rn
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Conclusion
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Summary and conclusion

@ Diagonals of products of (1 — x; — - -+ — x,)® are hypergeometric functions.
B The generating functions of the Dubrovin-Yang-Zagier numbers are algebraic.

Iso(t) is a quotient of hypergeometric functions and increasing. Thus the shape of
a projection of the Clifford torus is uniquely determined by its isoperimetric ratio.

B We can compute the N-th term of a g-holonomic sequence faster than previously.
@ We can compute the N-th term of a polynomial C-finite sequence faster.
@ The g-analogue of Pdlya's theorem holds if and only if g is a root of unity.
A C-finite sequence is a iff it has 1 characteristic root A and A € Q.

1 Rupertness is decidable and the truncated icosidodecahedron is Rupert.

21/22



Conclusion
°

Perspectives and open questions “Curiouser and curiouser!”

Describe Diagonals among D-finite functions.

Given a D-finite function, how to prove or disprove that it is algebraic in practice?
Given a D-finite function/P-finite sequence, how to prove that it is increasing?
Compute N-th terms in some P-finite sequences faster than in O(m) operations.
Compute the N-th term of an integer C-finite sequence in O(N) bit complexity.
Does there exist a suitable notion of “g-algebraicity”?

Describe among Diagonals or P-finite sequences.

Prove or disprove that the Rhombicosidodecahedron is Rupert.

And many, many more...
22/22



Bonus: Definition of ,F, and algebraicity

The generalized hypergeometric function with parameters ay,...,ap and by, ..., bq
is:

. (@) (ap); ¥
oFq([a1, .- ap]; [b1,. .., byl t) == JZZ; (bl)j"'(bI;)j Jv

where (x)p == x-(x+1)---(x + n— 1) is the rising facorial.
m [Fiirnsinn, Y., 2023] Can also handle the case: aj, by ¢ Q and a; — by € Z.

22/22



Bonus: Definition of ,F, and algebraicity

Theorem (Christol, 1986 and Beukers, Heckman, 1989)

Assume that the rational parameters {a1,...,ap} and {b1,...,bp_1,bp =1} are
disjoint modulo Z. Let N be their common denominator. Then

pr_l([al,...,ap],[bl,...,bp_l];t) is

m algebraic if and only if for all 1 < r < N with gcd(r, N) = 1 the numbers
{exp(2miraj),1 < j < p} and {exp(2mirb;),1 < j < p} interlace on the unit circle.

] if and only if for all 1 < r < N with ged(r, N) =1, one
encounters more numbers in {exp(2mira;),1 < j < p} than in
{exp(2mirbj),1 < j < p} when running through the unit circle from 1 to exp(2mwi).

m [Fiirnsinn, Y., 2023] Can also handle the case: aj, by ¢ Q and a; — by € Z.
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Bonus: DYZ-like numbers

Zagier's problem

Find (o, 8) € Q* x Q* such that u, - (a)n - (8)n - y" € Z for some v € Z*.
(X)h=x-(x+1)---(x+n-1).

# u % ODE order degree || # u v ODE order  degree
2 120 f, | 19/60 49/60 4 155520
4 120 || g, | 19/60 59/60 4 46080
¢ | 1/5 4/5 2 120 h, | 29/60 49/60 4 46080
d, | 7/30 9/10 4 155520 || i, | 29/60 59/60 4 155520
e, | 9/10 17/30 4 155520
Theorem (Bostan, Weil, Y., 2023)
The sequences , ,(€n)n>0, - - -, (in)n>0 are solutions to Zagier's problem.

m Estimates for degrees based on numerical monodromy group computations.

m Proof of algebraicity: Done: a,, b, c,. In progress: dy, en, fn, &n, hn, In-
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