Integer sequences, algebraic series and differential operators ${ }^{1}$
 PhD Defense

Sergey Yurkevich
University Paris-Saclay (Inria Saclay) and
University of Vienna
6th of July, 2023

[^0]
Contents of the thesis I

Chapter 1: Introduction and summary of all chapters.

Chapter 2: "On a Class of Hypergeometric Diagonals", with A. Bostan, 2022.
In: Proceedings of the American Mathematical Society, vol 150, pp. 1071-1897.

Chapter 3: Joint work with A. Bostan and J.-A. Weil, and: "The art of algorithmic guessing in gfun", 2022. In: Maple Transactions, vol 2, pp. 14421:1-14421:19.

Chapter 4: "A hypergeometric proof that Iso is bijective", with A. Bostan, 2022. In: Proceedings of the American Mathematical Society, vol 150, pp. 2131-2136.

Chapter 5: "Fast Computation of the N-th Term of a q-Holonomic Sequence and Applications", with A. Bostan, 2023. In J. of Symbolic Comp., vol 115, pp. 96-123.

Contents of the thesis II

Chapter 6: "Beating binary powering for polynomial matrices", with A. Bostan and V. Neiger, 2023. To appear in the Proceedings of ISSAC'23.

Chapter 7: "On the q-analogue of Pólya's Theorem", with A. Bostan, 2023.
In: Electronic Journal of Combinatorics, vol 30, pp. 2.9:1-9.

Chapter 8: "On the representability of sequences as constant terms", with A. Bostan and A. Straub, 2023. To appear in Journal of Number Theory.

Chapter 9: "An algorithmic approach to Rupert's problem", with J. Steininger, 2023, In: Mathematics of Computation, vol 92, pp. 1905-1929.

Chapter 10: A collection of 60 open problems and questions related to the thesis.

Chapter 2: Hypergeometric diagonals

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)={ }_{M} F_{M-1}\left([u] ;[v] ;(-N)^{N} t\right)
$$

- Starting point is the main identity from [Abdelaziz, Koutschan, Maillard, 2020]:

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right] ;\left[1, \frac{2}{3}\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right)
$$

- Left-hand side is a generalized hypergeometric function:

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right] ;\left[1, \frac{2}{3}\right] ; 27 t\right):=1+\frac{40}{9} t+\frac{5236}{81} t^{2}+\cdots+\mathrm{a}_{\mathrm{n}} t^{n}+\cdots
$$

■ Right-hand side is the diagonal of an algebraic function:

$$
\frac{(1-x-y)^{1 / 3}}{1-x-y-z}=1+\frac{2}{3} x+\frac{2}{3} y+z+\frac{10}{9} x y+\frac{5}{3} x z+\cdots+\frac{40}{9} x y z+\cdots+\frac{5236}{81} x^{2} y^{2} z^{2}+\cdots
$$

- Starting point is the main identity from [Abdelaziz, Koutschan, Maillard, 2020]:

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right] ;\left[1, \frac{2}{3}\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right)
$$

- Left-hand side is a generalized hypergeometric function:

$$
\begin{array}{r}
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right] ;\left[1, \frac{2}{3}\right] ; 27 t\right):=1+\frac{40}{9} t+\frac{5236}{81} t^{2}+\cdots+\mathrm{a}_{\mathrm{n}} t^{n}+\cdots \\
\frac{a_{n+1}}{a_{n}}=\frac{(9 n+2)(9 n+5)(9 n+8)}{3(n+1)^{2}(9 n+6)}
\end{array}
$$

■ Right-hand side is the diagonal of an algebraic function:

$$
\frac{(1-x-y)^{1 / 3}}{1-x-y-z}=1+\frac{2}{3} x+\frac{2}{3} y+z+\frac{10}{9} x y+\frac{5}{3} x z+\cdots+\frac{40}{9} x y z+\cdots+\frac{5236}{81} x^{2} y^{2} z^{2}+\cdots
$$

Setting

A sequence $\left(u_{n}\right)_{n \geq 0}$ is P-finite if it satisfies a linear recurrence with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0
$$

$\left(u_{n}\right)_{n \geq 0}$ is hypergeometric if $r=1$.

Let $(\alpha)_{n}=\alpha \cdot(\alpha+1) \cdots(\alpha+n-1)$.
Then $u_{n}=\frac{(a)_{n} \cdot(b)_{n}}{(c)_{n} \cdot n!}$ satisfies

$$
(c+n)(n+1) u_{n+1}-(a+n)(b+n) u_{n}=0 .
$$

Setting

A series $f(t) \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$
p_{r}(t) f^{(r)}(t)+\cdots+p_{0}(t) f(t)=0
$$

Let $(\alpha)_{n}=\alpha \cdot(\alpha+1) \cdots(\alpha+n-1)$.
Then ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ c & ; t\end{array}\right]:=\sum_{n \geq 0} \frac{(a)_{n} \cdot(b)_{n}}{(c)_{n} \cdot n!} t^{n}$ satisfies

$$
t(1-t) f^{\prime \prime}(t)+(c-(a+b+1) t) f^{\prime}(t)-a b f(t)=0
$$

Setting

For a multivariate power series

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j_{1}, \ldots, j_{n}} f_{j_{1}, \ldots, j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

the diagonal is given by

$$
\operatorname{Diag}(f)=\sum_{j} f_{j, j, \ldots, j} t^{j} \in \mathbb{Q} \llbracket t \rrbracket .
$$

Diagonals are series which can be written as diagonals of multivariate algebraic functions.

$$
\operatorname{Diag}\left(\frac{1}{1-x-y}\right)=\operatorname{Diag} \sum_{i, j}\binom{i+j}{j} x^{i} y^{j}=\sum_{n}\binom{2 n}{n} t^{n}=(1-4 t)^{-1 / 2}
$$

Setting

For a multivariate power series

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{j_{1}, \ldots, j_{n}} f_{j_{1}, \ldots, j_{n}} x_{1}^{j_{1}} \cdots x_{n}^{j_{n}}
$$

the diagonal is given by

$$
\operatorname{Diag}(f)=\sum_{j} f_{j, j, \ldots, j} t^{j} \in \mathbb{Q} \llbracket t \rrbracket
$$

Diagonals are series which can be written as diagonals of multivariate algebraic functions.
Christol's Conjecture [Christol, 1986]: Any convergent D-finite power series with integer coefficients is a diagonal. Specifically: ${ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right] ;\left[1, \frac{1}{3}\right], t\right) \in$ Diagonals.

Theorem (Bostan, Y., 2022)

The diagonal of any finite product of algebraic functions of the form

$$
\left(1-x_{1}-\cdots-x_{n}\right)^{R}, \quad R \in \mathbb{Q}
$$

is a generalized hypergeometric function with explicitly determined parameters.

- This vastly generalizes the main identity in [Abdelaziz, Koutschan, Maillard, 2020].
- We also settle down other memberships: E.g. ${ }_{3} F_{2}\left(\left[\frac{1}{4}, \frac{3}{8}, \frac{7}{8}\right] ;\left[1, \frac{1}{3}\right], t\right) \in$ Diagonals.
- Main observation for the proof:

$$
\begin{aligned}
& {\left[x_{1}^{k_{1}} \cdots x_{N}^{k_{N}}\right]\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}} \\
& \quad=\binom{b_{N}}{k_{N}}\binom{b_{N-1}+b_{N}-k_{N}}{k_{N-1}} \cdots\binom{b_{1}+\cdots+b_{N}-k_{N} \cdots-k_{2}}{k_{1}} .
\end{aligned}
$$

Chapter 3: Dubrovin-Yang-Zagier numbers and algebraicity of D-finite functions

$$
\begin{aligned}
& \left(a_{n}\right)_{n \geq 0}=(1,-48300,7981725900,-1469166887370000, \ldots) \\
& \left(b_{n}\right)_{n \geq 0}=(1,-144900,88464128725,-62270073456990000, \ldots)
\end{aligned}
$$

Origin of a_{n} and b_{n}
■ In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

$$
\begin{aligned}
u_{n-3}+ & 20\left(4500 n^{2}-18900 n+19739\right) u_{n-2}+80352000 n(5 n-1)(5 n-2)(5 n-4) u_{n}+ \\
& +25\left(2592000 n^{4}-16588800 n^{3}+39118320 n^{2}-39189168 n+14092603\right) u_{n-1}=0
\end{aligned}
$$

$$
\text { with initial terms } u_{0}=1, u_{1}=-161 /\left(2^{10} \cdot 3^{5}\right) \text { and } u_{2}=26605753 /\left(2^{23} \cdot 3^{12} \cdot 5^{2}\right)
$$

Problem (Zagier, 2018)
Find $(\alpha, \beta) \in \mathbb{Q}^{*} \times \mathbb{Q}^{*}$ such that $u_{n} \cdot(\alpha)_{n} \cdot(\beta)_{n} \cdot \gamma^{n} \in \mathbb{Z}$ for some $\gamma \in \mathbb{Z}^{*}$.

$$
(x)_{n}:=x \cdot(x+1) \cdots(x+n-1)
$$

- [Yang and Zagier]: $a_{n}=u_{n} \cdot(3 / 5)_{n} \cdot(4 / 5)_{n} \cdot\left(2^{10} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$,
- [Dubrovin and Yang]: $b_{n}=u_{n} \cdot(2 / 5)_{n} \cdot(9 / 10)_{n} \cdot\left(2^{12} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$.

■ "Yang and I found a formula showing that the numbers a_{n} are integers [...]" "Dubrovin and Yang found that the numbers b_{n} are also integral and that in this case the generating function [...] is actually algebraic!" [Zagier, 2018]

Definitions and interactions

[Abel, 1827]: Algebraic \subseteq D-finite.
[Furstenberg, 1967]:
Algebraic \subseteq Diagonals.
[Singer 1979, 2014]:
D-finite $f(t) \stackrel{?}{\in}$ Algebraic.
[Christol, 1984 and Lipshitz, 1988]:
Diagonals \subseteq D-finite.
[Petkovsek 1992]:
D-finite $f(t) \stackrel{?}{\in}$ Hypergeometric.
[Beukers, Heckman, 1989]:
Algebraic \cap Hypergeometric.
[Bostan, Lairez, Salvy, 2017]:
Diagonals $=$ Multiple binomial sums.
André-Christol Conjecture [André, 2004]: D-finite $f(t) \in \mathbb{Z} \llbracket t \rrbracket$ convergent \& minimal ODE ordinary in $0 \Rightarrow f(t)$ Algebraic

Main result B: Solving the mystery of a_{n} and b_{n}
■ "Yang and I found a formula showing that the numbers a_{n} are integers [...]" "Dubrovin and Yang found that the numbers b_{n} are also integral and that in this case the generating function [...] is actually algebraic!"
■ "My presumed arithmetic intuition [...] was entirely broken" - [Wadim Zudilin]

Problem

Investigate the nature of $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ and similar sequences.
Theorem (Bostan, Weil, Y.)
The generating functions of both $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier's problem: $\left(c_{n}\right)_{n \geq 0}, \ldots,\left(i_{n}\right)_{n \geq 0} \in \mathbb{Z}$.

Chapter 4: On the reduced volume of conformal transformations of tori

Motivation and Introduction

"Why do all humans have the same biconcave shaped red blood cells?"

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- The model asks to minimize the Willmore energy

$$
W(S):=\int_{S} H^{2} \mathrm{~d} A, \quad(H \text { is the mean curvature })
$$

over orientable closed surfaces $S \subseteq \mathbb{R}^{3}$ with genus g, area A_{0} and volume V_{0}.

- [Willmore, 1965]: For a torus $T=T(R, r)$ the Willmore energy is:

$$
W(T)=\frac{\pi^{2} R^{2}}{r \sqrt{R^{2}-r^{2}}} \rightsquigarrow \text { minimal for } R / r=\sqrt{2} .
$$

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)
Across all closed surfaces in \mathbb{R}^{3} of genus $g \geq 1$ the Willmore energy is minimal for $T_{\sqrt{2}}$.
■ $W(S)$ is invariant under Möbius transformations \Rightarrow no uniqueness of the shape.

Motivation and Introduction

"Why do all humans have the same biconcave shaped red blood cells?"

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- The model asks to minimize the Willmore energy

$$
W(S):=\int_{S} H^{2} \mathrm{~d} A, \quad(H \text { is the mean curvature })
$$

over orientable closed surfaces $S \subseteq \mathbb{R}^{3}$ with genus g, area A_{0} and volume V_{0}.

- [Willmore, 1965]: For a torus $T=T(R, r)$ the Willmore energy is:

$$
W(T)=\frac{\pi^{2} R^{2}}{r \sqrt{R^{2}-r^{2}}} \rightsquigarrow \text { minimal for } R / r=\sqrt{2} .
$$

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)
Across all closed surfaces in \mathbb{R}^{3} of genus $g \geq 1$ the Willmore energy is minimal for $T_{\sqrt{2}}$.
■ $W(S)$ is invariant under Möbius transformations \Rightarrow no uniqueness of the shape.

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- The model asks to minimize the Willmore energy

$$
W(S):=\int_{S} H^{2} \mathrm{~d} A, \quad(H \text { is the mean curvature })
$$

over orientable closed surfaces $S \subseteq \mathbb{R}^{3}$ with genus g, area A_{0} and volume V_{0}.

- [Willmore, 1965]: For a torus $T=T(R, r)$ the Willmore energy is:

$$
W(T)=\frac{\pi^{2} R^{2}}{r \sqrt{R^{2}-r^{2}}} \rightsquigarrow \text { minimal for } R / r=\sqrt{2}
$$

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)
Across all closed surfaces in \mathbb{R}^{3} of genus $g \geq 1$ the Willmore energy is minimal for $T_{\sqrt{2}}$.
■ $W(S)$ is invariant under Möbius transformations \Rightarrow no uniqueness of the shape.

Main result C: Iso is bijective

- In Canham's model, instead of A_{0} and V_{0} rather prescribe the isoperimetric ratio:

$$
\iota_{0}:=\pi^{1 / 6} \frac{\sqrt[3]{6 V_{0}}}{\sqrt{A_{0}}} \in(0,1]
$$

Question

Is the minimizer of $W(S)$ with prescribed genus g and isoperimetric ratio ι_{0} unique?
Theorem (Yu, Chen, 21; Melczer, Mezzarobba, 21; Bostan, Y., 22)
The shape of the projection of the Clifford torus to \mathbb{R}^{3} is uniquely determined by ι_{0}. Thus, if $g=1$ and $\iota_{0}^{3} \in\left[3 /\left(2^{5 / 4} \sqrt{\pi}\right), 1\right]$ then Canham's model has a unique solution.

Main result C': Iso is bijective
Proposition (Bostan, Y., 2022)
The surface area $\sqrt{2} \pi^{2} A\left(t^{2}\right)$ and volume $\sqrt{2} \pi^{2} V\left(t^{2}\right)$ of $i_{(t, 0,0)}\left(T_{\sqrt{2}}\right)$ are given by

$$
\begin{aligned}
& A(t)=\frac{4\left(1-t^{2}\right)}{\left(t^{2}-6 t+1\right)^{2}} \cdot{ }_{2} F_{1}\left[\begin{array}{c}
-\frac{1}{2}-\frac{1}{2} ; \frac{4 t}{(1-t)^{2}} \\
1
\end{array}\right] \\
& V(t)=\frac{2(1-t)^{3}}{\left(t^{2}-6 t+1\right)^{3}} \cdot{ }_{2} F_{1}\left[\begin{array}{c}
\left.-\frac{3}{2}-\frac{3}{2} ; \frac{4 t}{(1-t)^{2}}\right] \\
1
\end{array} .\right.
\end{aligned}
$$

Theorem (Bostan, Y., 2022)
The function $\operatorname{Iso}(t)^{2}=36 \pi \frac{V\left(t^{2}\right)^{2}}{A\left(t^{2}\right)^{3}}$ is increasing on $t \in(0, \sqrt{2}-1)$.

Chapter 5: Computing terms in q-holonomic sequences

Main result D: Sublinear algorithm for q-holonomic sequences
■ A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is holonomic/P-finite if it satisfies

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0 \quad n \geq 0, \quad c_{0}(x), \ldots, c_{r}(x) \in \mathbb{K}[x] .
$$

Theorem (Strassen, 1977; Chudnovsky², 1988)
Given $N \in \mathbb{N}$, one can compute u_{N} in $\tilde{O}(\sqrt{N})$ arithmetic operations.

- A sequence $\left(u_{n}(q)\right)_{n \geq 0} \in \mathbb{K}$ is called q-holonomic if for some $q \in \mathbb{K}$ it satisfies

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0, \quad c_{0}(x, y), \ldots, c_{r}(x, y) \in \mathbb{K}[x, y] .
$$

Theorem (Bostan, Y., 2023)

Given $N \in \mathbb{N}$, one can compute $u_{N}(q)$ in $\tilde{O}(\sqrt{N})$ arithmetic operations. Naive: $O(N)$
Idea: For $M(x) \in \mathbb{K}[x]^{r \times r}$ compute $M\left(q^{N-1}\right) \cdots M(q) M(1)$ using baby-steps/giant-steps.

Application: Evaluation of polynomials

Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
■ Generically, Horner's rule needs $O(\operatorname{deg} P)$ operations.
■ Our results imply that one can do better for large families of polynomials.

- For example, the truncated Jacobi theta function

$$
\vartheta_{N}(x):=1+x+x^{4}+x^{9}+\cdots+x^{N^{2}}
$$

evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ operations [Nogneng, Schost, 2018], [Bostan, Y., 2023].
■ Method: $\vartheta_{N}(q)=u_{N}$, where $u_{n}=\sum_{k=0}^{n} q^{k^{2}}$ is q-holonomic.

- [Bostan, Y., 2023]: Same complexity via unified algorithm for $\prod_{i=0}^{N}\left(x-a^{i}\right)$, or q-Hermite polynomials, or $\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{3} \bmod x^{N}$, etc.

Chapter 6: Computing terms in polynomial C-finite sequences

Polynomial C-finite sequences: Example

- Fibonacci polynomials: $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$

$$
F_{9}(x)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8} \text { and } F_{10}(x)=5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9}
$$

- Compute using the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$.
- [Folkore]: Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{cc}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{n / 2}(x)^{2} & \text { if } n \text { even } \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd }\end{cases}
$$

- Idea: Write $F_{N}(x)=f_{0}+f_{1} x+\cdots+f_{N} x^{N}$. Then $\left(f_{k}\right)_{k \geq 0}$ is P-finite:

$$
f_{k+2}=\frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_{k} \quad \text { for } k \geq 0
$$

with $\left(f_{0}, f_{1}\right)=(1,0)$ for odd N and $\left(f_{0}, f_{1}\right)=(0, N / 2)$ for even N.

Polynomial C-finite sequences: Example

- Fibonacci polynomials: $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$

$$
F_{9}(x)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8} \text { and } F_{10}(x)=5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} .
$$

- Compute using the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$. $O\left(N^{2}\right)$
- [Folkore]: Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{cc}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{n / 2}(x)^{2} & \text { if } n \text { even } \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd }\end{cases}
$$

- Idea: Write $F_{N}(x)=f_{0}+f_{1} x+\cdots+f_{N} x^{N}$. Then $\left(f_{k}\right)_{k \geq 0}$ is P-finite:

$$
f_{k+2}=\frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_{k} \quad \text { for } k \geq 0
$$

with $\left(f_{0}, f_{1}\right)=(1,0)$ for odd N and $\left(f_{0}, f_{1}\right)=(0, N / 2)$ for even N.

Polynomial C-finite sequences: Example

- Fibonacci polynomials: $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$

$$
F_{9}(x)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8} \text { and } F_{10}(x)=5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} .
$$

- Compute using the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$. $O\left(N^{2}\right)$
- [Folkore]: Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{cc}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{n / 2}(x)^{2} & \text { if } n \text { even } \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd }\end{cases}
$$

■ Idea: Write $F_{N}(x)=f_{0}+f_{1} x+\cdots+f_{N} x^{N}$. Then $\left(f_{k}\right)_{k \geq 0}$ is P-finite:

$$
f_{k+2}=\frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_{k} \quad \text { for } k \geq 0
$$

with $\left(f_{0}, f_{1}\right)=(1,0)$ for odd N and $\left(f_{0}, f_{1}\right)=(0, N / 2)$ for even N.

Polynomial C-finite sequences: Example

- Fibonacci polynomials: $F_{0}(x)=0, F_{1}(x)=1$ and $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$

$$
F_{9}(x)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8} \text { and } F_{10}(x)=5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} .
$$

- Compute using the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$. $O\left(N^{2}\right)$
- [Folkore]: Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{cc}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{n / 2}(x)^{2} & \text { if } n \text { even } \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd }\end{cases}
$$

■ Idea: Write $F_{N}(x)=f_{0}+f_{1} x+\cdots+f_{N} x^{N}$. Then $\left(f_{k}\right)_{k \geq 0}$ is P-finite:

$$
f_{k+2}=\frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_{k} \quad \text { for } k \geq 0
$$

with $\left(f_{0}, f_{1}\right)=(1,0)$ for odd N and $\left(f_{0}, f_{1}\right)=(0, N / 2)$ for even N.

Main result E: Beating binary powering

A polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$
u_{n+r}(x)=c_{r-1}(x) u_{n+r-1}(x)+\cdots+c_{0}(x) u_{n}(x)
$$

for some polynomials $c_{0}(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.
Theorem (Bostan, Neiger, Y., 2023)
Given a polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0}$, one can compute $u_{N}(x)$ in $O(N)$ operations in \mathbb{K}.

Corollary

Given a polynomial matrix $M(x)$, one can compute $M(x)^{N}$ in $O(N)$ field operations.

Chapter 7:

On the q-analogue of Pólya's Theorem

Specifically, if n, k, a, b satisfy the conditions stated earlier, is the function

$$
F(x, q)=\sum_{t=0}^{\infty}\left[\begin{array}{l}
n+a t \\
k+b t
\end{array}\right]_{q} x^{t}
$$

algebraic? That is, does there exist a nonzero polynomial $P(x, y, z)$ whose coefficients are constants (say, complex numbers) such that $P(x, q, F(x, q))=0$, for all x and q ?

Main result F: A q-analogue of Pólya's theorem

- Consequence of Pólya's theorem [Pólya, 1922]:

Theorem (Pólya, 1922)

For admissible n, k, a, b, the function $F(x):=\sum_{j \geq 0}\binom{n+a j}{k+b j} x^{j}$ is algebraic over $\mathbb{Q}(x)$.

- Aissen asked whether a q-analogue holds [Aissen, 1979]. We prove:

Theorem (Bostan, Y., 2022)
For admissible n, k, a, b, the function

$$
F(x, q):=\sum_{j \geq 0}\left[\begin{array}{l}
n+a j \\
k+b j
\end{array}\right]_{q} x^{j} \in \mathbb{C}[q] \llbracket x \rrbracket
$$

is never algebraic over $\mathbb{Q}(q, x)$. If $q \in \mathbb{C}$, then $F(x, q)$ is algebraic iff q is root of unity.

- $u_{n}(q)=\left[\begin{array}{c}n \\ k\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$, where $[n]_{q}!:=(1+q) \cdots\left(1+q+\cdots+q^{n-1}\right)$.
- Idea: It holds that $\left(u_{n}(q)\right)_{n \geq 0}$ is q-holonomic.

Chapter 8:

Representation of sequences as constant terms

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}=c t\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{x y z}\right)^{n}\right]
$$

Main result G: Describing Constant terms \cap C-finite sequences

- A sequence $A(n)$ is a constant term if it can be represented as

$$
A(n)=\operatorname{ct}\left[P(\boldsymbol{x})^{n} Q(\boldsymbol{x})\right]
$$

where $P, Q \in \mathbb{Q}\left[\boldsymbol{x}^{ \pm 1}\right]$ are Laurent polynomials in $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$.
Question (Zagier, 2018; Gorodetsky, 2021; Straub, 2022)
Which P-finite sequences are constant terms?
Specifically: Are the Fibonacci numbers a constant term sequence?
Theorem (Bostan, Straub, Y., 2023)
Let $A(n)$ be a C-finite sequence. $A(n)$ is a constant term if and only if it has a single characteristic root λ and $\lambda \in \mathbb{Q}$.

Chapter 9: On Rupert's problem

Summary and main result H: Deciding Rupertness "It shows us 'what's out there'."

Definition

A convex polyhedron $\mathbf{P} \subseteq \mathbb{R}^{3}$ is called Rupert if a hole with the shape of a straight tunnel can be cut into it such that a copy of \mathbf{P} can be moved through this hole.

Theorem (Prince Rupert; Nieuwland, 1816; Scriba, 1968; Jerrard, Wetzel, Yuan, 2017)
All Platonic solids are Rupert.
Theorem (Chai, Yuan, Zamfirescu, 18; Hoffmann, 18; Lavau, 19; Steininger, Y. 22)
At least 9 Archimedean solids are Rupert.

- [Steininger, Y., 22]: Practical algorithm and proof of algorithmic decidablity.

Summary and main result H: Deciding Rupertness "It shows us 'what's out there'."

Definition

A convex polyhedron $\mathbf{P} \subseteq \mathbb{R}^{3}$ is called Rupert if a hole with the shape of a straight tunnel can be cut into it such that a copy of \mathbf{P} can be moved through this hole.

Theorem (Prince Rupert; Nieuwland, 1816; Scriba, 1968; Jerrard, Wetzel, Yuan, 2017)
All Platonic solids are Rupert.
Theorem (Chai, Yuan, Zamfirescu, 18; Hoffmann, 18; Lavau, 19; Steininger, Y. 22)
At least 9 Archimedean solids are Rupert.

- [Steininger, Y., 22]: Practical algorithm and proof of algorithmic decidablity.

Summary and conclusion

A Diagonals of products of $\left(1-x_{1}-\cdots-x_{n}\right)^{R}$ are hypergeometric functions.
B The generating functions of the Dubrovin-Yang-Zagier numbers are algebraic.
C Iso(t) is a quotient of hypergeometric functions and increasing. Thus the shape of a projection of the Clifford torus is uniquely determined by its isoperimetric ratio.

D We can compute the N-th term of a q-holonomic sequence faster than previously.
E We can compute the N-th term of a polynomial C-finite sequence faster.
(F The q-analogue of Pólya's theorem holds if and only if q is a root of unity.
G A C-finite sequence is a constant term iff it has 1 characteristic root λ and $\lambda \in \mathbb{Q}$.
(H) Rupertness is decidable and the truncated icosidodecahedron is Rupert.

Perspectives and open questions

A? Describe Diagonals among D-finite functions.
B? Given a D-finite function, how to prove or disprove that it is algebraic in practice?
C? Given a D-finite function/P-finite sequence, how to prove that it is increasing?
D? Compute N-th terms in some P-finite sequences faster than in $\tilde{O}(\sqrt{N})$ operations.
E? Compute the N-th term of an integer C-finite sequence in $O(N)$ bit complexity.
F? Does there exist a suitable notion of " q-algebraicity"?
G? Describe Constant terms among Diagonals or P-finite sequences.
H? Prove or disprove that the Rhombicosidodecahedron is Rupert.

Bonus: Definition of ${ }_{p} F_{q}$ and algebraicity

The generalized hypergeometric function with parameters a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} is:

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right] ;\left[b_{1}, \ldots, b_{q}\right] ; t\right):=\sum_{j \geq 0} \frac{\left(a_{1}\right)_{j} \cdots\left(a_{p}\right)_{j}}{\left(b_{1}\right)_{j} \cdots\left(b_{q}\right)_{j}} \frac{t^{j}}{j!}
$$

where $(x)_{n}:=x \cdot(x+1) \cdots(x+n-1)$ is the rising facorial.

- [Fürnsinn, Y., 2023] Can also handle the case: $a_{j}, b_{k} \notin \mathbb{Q}$ and $a_{j}-b_{k} \in \mathbb{Z}$.

Bonus: Definition of ${ }_{p} F_{q}$ and algebraicity

Theorem (Christol, 1986 and Beukers, Heckman, 1989)

Assume that the rational parameters $\left\{a_{1}, \ldots, a_{p}\right\}$ and $\left\{b_{1}, \ldots, b_{p-1}, b_{p}=1\right\}$ are disjoint modulo \mathbb{Z}. Let N be their common denominator. Then

$$
{ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right) \text { is }
$$

- algebraic if and only if for all $1 \leq r<N$ with $\operatorname{gcd}(r, N)=1$ the numbers $\left\{\exp \left(2 \pi i r a_{j}\right), 1 \leq j \leq p\right\}$ and $\left\{\exp \left(2 \pi i r b_{j}\right), 1 \leq j \leq p\right\}$ interlace on the unit circle.
- globally bounded if and only if for all $1 \leq r<N$ with $\operatorname{gcd}(r, N)=1$, one encounters more numbers in $\left\{\exp \left(2 \pi i r_{j}\right), 1 \leq j \leq p\right\}$ than in $\left\{\exp \left(2 \pi i r b_{j}\right), 1 \leq j \leq p\right\}$ when running through the unit circle from 1 to $\exp (2 \pi i)$.

■ [Fürnsinn, Y., 2023] Can also handle the case: $a_{j}, b_{k} \notin \mathbb{Q}$ and $a_{j}-b_{k} \in \mathbb{Z}$.

Bonus: DYZ-like numbers

Zagier's problem

Find $(\alpha, \beta) \in \mathbb{Q}^{*} \times \mathbb{Q}^{*}$ such that $u_{n} \cdot(\alpha)_{n} \cdot(\beta)_{n} \cdot \gamma^{n} \in \mathbb{Z}$ for some $\gamma \in \mathbb{Z}^{*}$.

$$
(x)_{n}:=x \cdot(x+1) \cdots(x+n-1) .
$$

$\#$	u	v	ODE order	degree	$\#$	u	v	ODE order	degree
a_{n}	$3 / 5$	$4 / 5$	2	120	f_{n}	$19 / 60$	$49 / 60$	4	155520
b_{n}	$2 / 5$	$9 / 10$	4	120	g_{n}	$19 / 60$	$59 / 60$	4	46080
c_{n}	$1 / 5$	$4 / 5$	2	120	h_{n}	$29 / 60$	$49 / 60$	4	46080
d_{n}	$7 / 30$	$9 / 10$	4	155520	i_{n}	$29 / 60$	$59 / 60$	4	155520
e_{n}	$9 / 10$	$17 / 30$	4	155520					

Theorem (Bostan, Weil, Y., 2023)
The sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}, \ldots,\left(i_{n}\right)_{n \geq 0}$ are solutions to Zagier's problem.

- Estimates for degrees based on numerical monodromy group computations.

■ Proof of algebraicity: Done: a_{n}, b_{n}, c_{n}. In progress: $d_{n}, e_{n}, f_{n}, g_{n}, h_{n}, i_{n}$.

[^0]: ${ }^{1}$ Supervised by Alin Bostan and Herwig Hauser

