Summary

Diagonals DYZ n 0000 0000 ers Iso 000 N-th terms

Pólya's theorem

Constant terms

Rupert's problem

Conclusio 00

Integer sequences, algebraic series and differential operators¹ PhD Defense

Sergey Yurkevich

University Paris-Saclay (Inria Saclay) and University of Vienna

6th of July, 2023

¹Supervised by Alin Bostan and Herwig Hauser

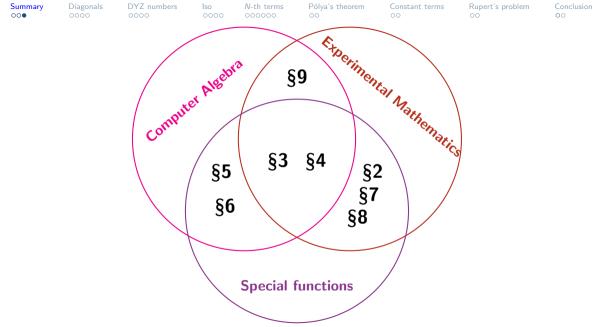
Summary Diagonals DYZ numbers Iso N-th terms Pólya's theorem Constant terms Rupert's problem Conclusion •••• •••• •••• •••• •••</

Chapter 1: Introduction and summary of all chapters.

- **Chapter 2**: "On a Class of Hypergeometric Diagonals", with A. Bostan, 2022. In: *Proceedings of the American Mathematical Society*, vol 150, pp. 1071–1897.
- **Chapter 3**: Joint work with A. Bostan and J.-A. Weil, and: "The art of algorithmic guessing in gfun", 2022. In: *Maple Transactions*, vol 2, pp. 14421:1–14421:19.
- **Chapter 4**: "A hypergeometric proof that Iso is bijective", with A. Bostan, 2022. In: *Proceedings of the American Mathematical Society*, vol 150, pp. 2131–2136.
- **Chapter 5**: "Fast Computation of the *N*-th Term of a *q*-Holonomic Sequence and Applications", with A. Bostan, 2023. In *J. of Symbolic Comp.*, vol 115, pp. 96–123.

Summary Diagonals DYZ numbers Iso N-th terms Pólya's theorem Constant terms Rupert's problem Conclusion of the thesis II

- **Chapter 6**: "Beating binary powering for polynomial matrices", with A. Bostan and V. Neiger, 2023. To appear in the Proceedings of *ISSAC'23*.
- **Chapter 7**: "On the *q*-analogue of Pólya's Theorem", with A. Bostan, 2023. In: *Electronic Journal of Combinatorics*, vol 30, pp. 2.9:1-9.
- **Chapter 8**: "On the representability of sequences as constant terms", with A. Bostan and A. Straub, 2023. To appear in *Journal of Number Theory*.
- **Chapter 9**: "An algorithmic approach to Rupert's problem", with J. Steininger, 2023, In: *Mathematics of Computation*, vol 92, pp. 1905–1929.
- Chapter 10: A collection of 60 open problems and questions related to the thesis.



Summary

Diagonals DYZ

umbers Iso

N-th terms

Pólya's theorem

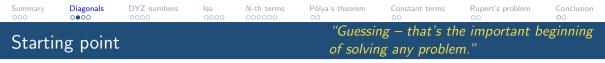
Constant terms

Rupert's problem

Conclusion

Chapter 2: *Hypergeometric diagonals*

$$\mathrm{Diag}((1+x_1)^{b_1}\cdots(1+x_1+\cdots+x_N)^{b_N}) = {}_M F_{M-1}([u]; [v]; (-N)^N t).$$



Starting point is the main identity from [Abdelaziz, Koutschan, Maillard, 2020]:

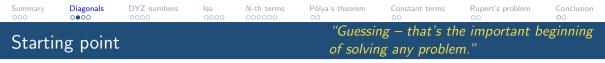
$$_{3}F_{2}\left(\left[\frac{2}{9},\frac{5}{9},\frac{8}{9}\right];\left[1,\frac{2}{3}\right];27t\right) = \operatorname{Diag}\left(\frac{(1-x-y)^{1/3}}{1-x-y-z}\right)$$

• Left-hand side is a generalized *hypergeometric function*:

$$_{3}F_{2}\left(\left[\frac{2}{9},\frac{5}{9},\frac{8}{9}\right];\left[1,\frac{2}{3}\right];27t\right) \coloneqq 1+\frac{40}{9}t+\frac{5236}{81}t^{2}+\cdots+a_{n}t^{n}+\cdots$$

Right-hand side is the diagonal of an *algebraic function*:

$$\frac{(1-x-y)^{1/3}}{1-x-y-z} = 1 + \frac{2}{3}x + \frac{2}{3}y + z + \frac{10}{9}xy + \frac{5}{3}xz + \dots + \frac{40}{9}xyz + \dots + \frac{5236}{81}x^2y^2z^2 + \dots$$



Starting point is the main identity from [Abdelaziz, Koutschan, Maillard, 2020]:

$$_{3}F_{2}\left(\left[\frac{2}{9},\frac{5}{9},\frac{8}{9}\right];\left[1,\frac{2}{3}\right];27t\right) = \operatorname{Diag}\left(\frac{(1-x-y)^{1/3}}{1-x-y-z}\right)$$

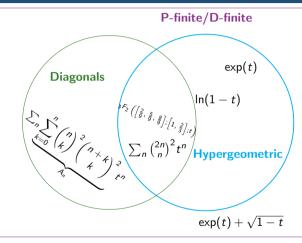
• Left-hand side is a generalized *hypergeometric function*:

$${}_{3}F_{2}\left(\left[\frac{2}{9},\frac{5}{9},\frac{8}{9}\right];\left[1,\frac{2}{3}\right];27t\right) \coloneqq 1 + \frac{40}{9}t + \frac{5236}{81}t^{2} + \dots + a_{n}t^{n} + \dots \\ \frac{a_{n+1}}{a_{n}} = \frac{(9n+2)(9n+5)(9n+8)}{3(n+1)^{2}(9n+6)}$$

Right-hand side is the diagonal of an *algebraic function*:

$$\frac{(1-x-y)^{1/3}}{1-x-y-z} = 1 + \frac{2}{3}x + \frac{2}{3}y + z + \frac{10}{9}xy + \frac{5}{3}xz + \dots + \frac{40}{9}xyz + \dots + \frac{5236}{81}x^2y^2z^2 + \dots$$

Setting



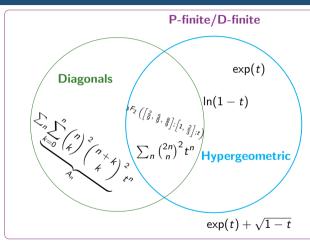
A sequence $(u_n)_{n\geq 0}$ is **P-finite** if it satisfies a linear recurrence with polynomial coefficients:

 $c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0.$

 $(u_n)_{n\geq 0}$ is hypergeometric if r=1.

Let
$$(\alpha)_n = \alpha \cdot (\alpha + 1) \cdots (\alpha + n - 1)$$
.
Then $u_n = \frac{(a)_n \cdot (b)_n}{(c)_n \cdot n!}$ satisfies

 $(c+n)(n+1)u_{n+1} - (a+n)(b+n)u_n = 0.$



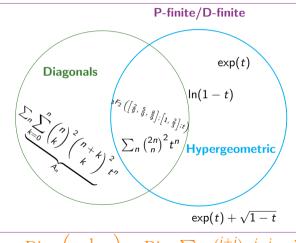
A series $f(t) \in \mathbb{Q}[[t]]$ is **D-finite** if it satisfies a linear differential equation with polynomial coefficients:

$$p_r(t)f^{(r)}(t) + \cdots + p_0(t)f(t) = 0.$$

Let
$$(\alpha)_n = \alpha \cdot (\alpha + 1) \cdots (\alpha + n - 1).$$

Then
$${}_2F_1\begin{bmatrix}a&b\\c\end{bmatrix} \coloneqq \sum_{n\geq 0} \frac{(a)_n \cdot (b)_n}{(c)_n \cdot n!} t^n$$
 satisfies

t(1-t)f''(t) + (c - (a+b+1)t)f'(t) - abf(t) = 0.



For a multivariate power series

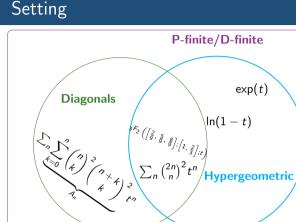
$$f(x_1,\ldots,x_n)=\sum_{j_1,\ldots,j_n}f_{j_1,\ldots,j_n}x_1^{j_1}\cdots x_n^{j_n}$$

the diagonal is given by

$$\operatorname{Diag}(f) = \sum_{j} f_{j,j,\dots,j} t^{j} \in \mathbb{Q}\llbracket t
rbracket.$$

Diagonals are series which can be written as diagonals of **multivariate algebraic** functions.

 $\operatorname{Diag}\left(\frac{1}{1-x-y}\right) = \operatorname{Diag}\sum_{i,j} \binom{i+j}{j} x^i y^j = \sum_n \binom{2n}{n} t^n = (1-4t)^{-1/2}$



 $\exp(t) + \sqrt{1-t}$

For a multivariate power series

$$f(x_1,\ldots,x_n)=\sum_{j_1,\ldots,j_n}f_{j_1,\ldots,j_n}x_1^{j_1}\cdots x_n^{j_n}$$

the diagonal is given by

$$\operatorname{Diag}(f) = \sum_{j} f_{j,j,\dots,j} t^{j} \in \mathbb{Q}\llbracket t \rrbracket.$$

Diagonals are series which can be written as diagonals of **multivariate algebraic** functions.

Christol's Conjecture [Christol, 1986]: Any convergent **D-finite** power series with *integer coefficients* is a **diagonal**. Specifically: ${}_{3}F_{2}([\frac{1}{9}, \frac{4}{9}, \frac{5}{9}]; [1, \frac{1}{3}], t) \in \text{Diagonals}.$

Summary 000	Diagonals 000●	DYZ numbers 0000	lso 0000	N-th terms	Pólya's theore	m Constant terms	Rupert's problem	Conclusion 00	
N 4 - '	II A	11		•		"First guess, then	prove.		
iviain r	esuit A :	Hypergeo	eometric diagonals			All great discoveries were made in this style."			

Theorem (Bostan, Y., 2022)

The diagonal of any finite product of algebraic functions of the form

$$(1-x_1-\cdots-x_n)^R, \qquad R\in\mathbb{Q},$$

is a generalized hypergeometric function with explicitly determined parameters.

This vastly generalizes the main identity in [Abdelaziz, Koutschan, Maillard, 2020].
 We also settle down other memberships: E.g. ₃F₂([¹/₄, ³/₈, ⁷/₈]; [1, ¹/₃], t) ∈ Diagonals.
 Main observation for the proof:

$$\begin{split} [x_1^{k_1} \cdots x_N^{k_N}] (1+x_1)^{b_1} (1+x_1+x_2)^{b_2} \cdots (1+x_1+\cdots+x_N)^{b_N} \\ &= \binom{b_N}{k_N} \binom{b_{N-1}+b_N-k_N}{k_{N-1}} \cdots \binom{b_1+\cdots+b_N-k_N\cdots-k_2}{k_1}. \end{split}$$

Summary Diagonals DYZ numbers Iso N-th terms Póly

Pólya's theorem Cor

Constant terms Rupert's problem

n Conc

Chapter 3: *Dubrovin-Yang-Zagier numbers and algebraicity of D-finite functions*

$(a_n)_{n\geq 0} = (1, -48300, 7981725900, -1469166887370000, \dots)$ $(b_n)_{n\geq 0} = (1, -144900, 88464128725, -62270073456990000, \dots)$

Summary b_{000} b_{000} b_{000} b_{000} b_{000} b_{000} b_{0000} b_{000} b_{00

In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

$$u_{n-3} + 20 \left(4500 n^2 - 18900 n + 19739\right) u_{n-2} + 80352000 n (5n-1)(5n-2)(5n-4) u_n + \\ + 25 \left(2592000 n^4 - 16588800 n^3 + 39118320 n^2 - 39189168 n + 14092603\right) u_{n-1} = 0,$$

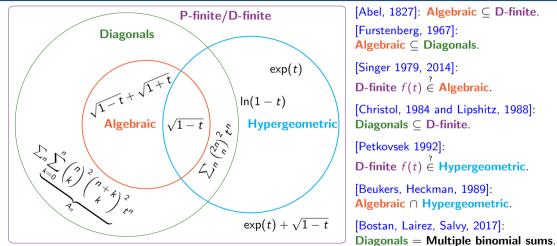
with initial terms $u_0 = 1$, $u_1 = -161/(2^{10} \cdot 3^5)$ and $u_2 = 26605753/(2^{23} \cdot 3^{12} \cdot 5^2)$.

Problem (Zagier, 2018)

Find
$$(\alpha, \beta) \in \mathbb{Q}^* \times \mathbb{Q}^*$$
 such that $u_n \cdot (\alpha)_n \cdot (\beta)_n \cdot \gamma^n \in \mathbb{Z}$ for some $\gamma \in \mathbb{Z}^*$.
 $(x)_n \coloneqq x \cdot (x+1) \cdots (x+n-1).$

- [Yang and Zagier]: $a_n = u_n \cdot (3/5)_n \cdot (4/5)_n \cdot (2^{10} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}$,
- [Dubrovin and Yang]: $b_n = u_n \cdot (2/5)_n \cdot (9/10)_n \cdot (2^{12} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}.$
- "Yang and I found a formula showing that the numbers a_n are integers [...]"
 "Dubrovin and Yang found that the numbers b_n are also integral and that in this case the generating function [...] is actually algebraic!" [Zagier, 2018]

Definitions and interactions



André-Christol Conjecture [André, 2004]: D-finite $f(t) \in \mathbb{Z}[t]$ convergent & minimal ODE ordinary in $0 \Rightarrow f(t)$ Algebraic 9/22

Summary
 ∞ Diagonals
 ∞ DYZ numbers
 ∞ Iso
 ∞ N-th terms
 ∞ Pólya's theorem
 ∞ Constant terms
 ∞ Rupert's problem
 ∞ Conclusion
 ∞ Main result B: Solving the mystery of a_n and b_n "So this is a very
mysterious example."

- "Yang and I found a formula showing that the numbers a_n are integers [...]"
 "Dubrovin and Yang found that the numbers b_n are also integral and that in this case the generating function [...] is actually algebraic!"
- "My presumed arithmetic intuition [...] was entirely broken" [Wadim Zudilin]

Problem

Investigate the nature of $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$ and similar sequences.

Theorem (Bostan, Weil, Y.)

The generating functions of both $(a_n)_{n\geq 0}$ and $(b_n)_{n\geq 0}$ are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier's problem: $(c_n)_{n\geq 0}, \ldots, (i_n)_{n\geq 0} \in \mathbb{Z}$.

Diagonals

Summary

N-th terms 0000

Iso

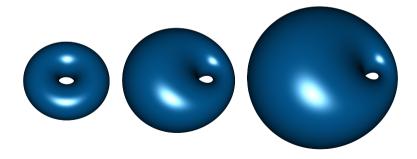
Pólya's theorem

Constant terms

Rupert's problem

00

Chapter 4: On the reduced volume of conformal transformations of tori



Summary oco Diagonals oco DYZ numbers oco Iso oco N-th terms oco Pólya's theorem oco Constant terms oco Rupert's problem oco Court oco

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- The model asks to minimize the Willmore energy

$$W(\mathcal{S})\coloneqq \int_{\mathcal{S}} H^2 \mathrm{d} A, \hspace{1em} (H \hspace{1em} ext{is the mean curvature})$$

over orientable closed surfaces $S \subseteq \mathbb{R}^3$ with genus g, area A_0 and volume V_0 . [Willmore, 1965]: For a torus T = T(R, r) the Willmore energy is:

$$W(T) = \frac{\pi^2 R^2}{r\sqrt{R^2 - r^2}} \rightsquigarrow \text{minimal for } R/r = \sqrt{2}.$$

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in \mathbb{R}^3 of genus $g \ge 1$ the Willmore energy is minimal for $T_{\sqrt{2}}$.

• W(S) is invariant under Möbius transformations \Rightarrow no uniqueness of the shape.

Summary oco Diagonals oco DYZ numbers oco Iso oco N-th terms oco Pólya's theorem oco Constant terms oco Rupert's problem oco Court oco

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- The model asks to minimize the Willmore energy

$$W(\mathcal{S})\coloneqq \int_{\mathcal{S}} H^2 \mathrm{d} A, \hspace{1em} (H \hspace{1em} ext{is the mean curvature})$$

over orientable closed surfaces $S \subseteq \mathbb{R}^3$ with genus g, area A_0 and volume V_0 . [Willmore, 1965]: For a torus T = T(R, r) the Willmore energy is:

$$W(T) = \frac{\pi^2 R^2}{r\sqrt{R^2 - r^2}} \rightsquigarrow \text{minimal for } R/r = \sqrt{2}.$$

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in \mathbb{R}^3 of genus $g \ge 1$ the Willmore energy is minimal for $T_{\sqrt{2}}$.

• W(S) is invariant under Möbius transformations \Rightarrow no uniqueness of the shape.

Summary occ Diagonals occ DYZ numbers occ Iso occ N-th terms occ Pólya's theorem occ Constant terms occ Rupert's problem occ Conclusion occ Motivation and Introduction Introduction "Why do all humans have the same biconcave shaped red blood cells?" Same biconcave shaped red blood cells?"

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- The model asks to minimize the Willmore energy

$$W(\mathcal{S})\coloneqq \int_{\mathcal{S}} H^2 \mathrm{d} A, \quad (H ext{ is the mean curvature})$$

over orientable closed surfaces $S \subseteq \mathbb{R}^3$ with genus g, area A_0 and volume V_0 . [Willmore, 1965]: For a torus T = T(R, r) the Willmore energy is:

$$W(T) = \frac{\pi^2 R^2}{r\sqrt{R^2 - r^2}} \rightsquigarrow \text{ minimal for } R/r = \sqrt{2}.$$

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in \mathbb{R}^3 of genus $g \ge 1$ the Willmore energy is minimal for $T_{\sqrt{2}}$.

• W(S) is invariant under Möbius transformations \Rightarrow no uniqueness of the shape.

 Summary
 Diagonals
 DYZ numbers
 Iso
 N-th terms
 Pólya's theorem
 Constant terms
 Rupert's problem
 Conclusion

 Main result C: Iso is bijective
 "Nature is not generic."

• In Canham's model, instead of A_0 and V_0 rather prescribe the *isoperimetric ratio*:

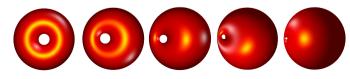
$$\iota_0 \coloneqq \pi^{1/6} rac{\sqrt[3]{6V_0}}{\sqrt{A_0}} \in (0,1].$$

Question

Is the minimizer of W(S) with prescribed genus g and isoperimetric ratio ι_0 unique?

Theorem (Yu, Chen, 21; Melczer, Mezzarobba, 21; Bostan, Y., 22)

The shape of the projection of the Clifford torus to \mathbb{R}^3 is uniquely determined by ι_0 . Thus, if g = 1 and $\iota_0^3 \in [3/(2^{5/4}\sqrt{\pi}), 1]$ then Canham's model has a unique solution.



Main result C': Iso is bijective

lso

0000

Diagonals

Theorem

Summary

"I could never resist a definite integral."

Rupert's problem

Constant terms

Proposition (Bostan, Y., 2022)

The surface area $\sqrt{2}\pi^2 A(t^2)$ and volume $\sqrt{2}\pi^2 V(t^2)$ of $i_{(t,0,0)}(T_{\sqrt{2}})$ are given by

N-th terms

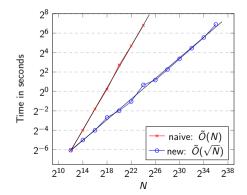
$$A(t) = \frac{4(1-t^2)}{(t^2-6t+1)^2} \cdot {}_2F_1 \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ 1 \end{bmatrix}; \frac{4t}{(1-t)^2} \end{bmatrix},$$

$$V(t) = \frac{2(1-t)^3}{(t^2-6t+1)^3} \cdot {}_2F_1 \begin{bmatrix} -\frac{3}{2} & -\frac{3}{2} \\ 1 \end{bmatrix}; \frac{4t}{(1-t)^2} \end{bmatrix}.$$
Theorem (Bostan, Y., 2022)
The function $\operatorname{lso}(t)^2 = 36\pi \frac{V(t^2)^2}{A(t^2)^3}$ is increasing on $t \in (0, \sqrt{2}-1).$

Pólya's theorem

SummaryDiagonalsDYZ numbersIsoN-th termsPólya's theoremConstant termsRupert's problemConclusion000000000000000000000000000

Chapter 5: Computing terms in q-holonomic sequences



Main result **D**: Sublinear algorithm for *q*-holonomic sequences

N-th terms

00000

• A sequence $(u_n)_{n\geq 0} \in \mathbb{K}$ is holonomic/P-finite if it satisfies

lso

$$c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0$$
 $n\geq 0,$ $c_0(x),\ldots,c_r(x)\in\mathbb{K}[x].$

Pólva's theorem

Constant terms

Rupert's problem

Theorem (Strassen, 1977; Chudnovsky², 1988) Given $N \in \mathbb{N}$, one can compute u_N in $\tilde{O}(\sqrt{N})$ arithmetic operations. Naive: O(N)A sequence $(u_n(q))_{n\geq 0} \in \mathbb{K}$ is called *q*-holonomic if for some $q \in \mathbb{K}$ it satisfies $c_r(q, q^n)u_{n+r} + \dots + c_0(q, q^n)u_n = 0$ $n \geq 0$, $c_0(x, y), \dots, c_r(x, y) \in \mathbb{K}[x, y]$.

Theorem (Bostan, Y., 2023)

Summary

Diagonals

Given $N \in \mathbb{N}$, one can compute $u_N(q)$ in $\tilde{O}(\sqrt{N})$ arithmetic operations. Naive: O(N)

Idea: For $M(x) \in \mathbb{K}[x]^{r \times r}$ compute $M(q^{N-1}) \cdots M(q)M(1)$ using baby-steps/giant-steps.

Summary occ Diagonals occ DYZ numbers occ Iso occ N-th terms occ Pólya's theorem occ Constant terms occ Rupert's problem occ Conclusion occ Application: Evaluation of polynomials "Do not waste a factor of two!"

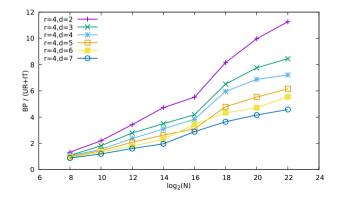
- **Task:** Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\deg P)$ operations.
- Our results imply that one can do better for large families of polynomials.
- For example, the truncated Jacobi theta function

$$\vartheta_N(x) \coloneqq 1 + x + x^4 + x^9 + \dots + x^{N^2}$$

evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ operations [Nogneng, Schost, 2018], [Bostan, Y., 2023]. • Method: $\vartheta_N(q) = u_N$, where $u_n = \sum_{k=0}^n q^{k^2}$ is *q*-holonomic.

• [Bostan, Y., 2023]: Same complexity via unified algorithm for $\prod_{i=0}^{N} (x - a^{i})$, or *q*-Hermite polynomials, or $\prod_{i=1}^{\infty} (1 - x^{i})^{3} \mod x^{N}$, etc. SummaryDiagonalsDYZ numbersIsoN-th termsPólya's theoremConstant termsRupert's problemConclusion000000000000000000000000000000

Chapter 6: Computing terms in polynomial C-finite sequences



Summary

Diagonals

Fibonacci polynomials: $F_0(x) = 0$, $F_1(x) = 1$ and $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$

N₋th terms

000000

 $F_9(x) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8$ and $F_{10}(x) = 5x + 20x^3 + 21x^5 + 8x^7 + x^9$.

Pólva's theorem

Constant terms

Rupert's problem

• Compute using the definition: $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$.

• [Folkore]: Use binary powering to compute M_N , where $M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}^n$:

$$M_n(x) = \begin{cases} M_{n/2}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases}$$

• Idea: Write $F_N(x) = f_0 + f_1 x + \cdots + f_N x^N$. Then $(f_k)_{k\geq 0}$ is **P-finite**:

$$f_{k+2} = rac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_k \quad ext{ for } k \geq 0.$$

with $(f_0, f_1) = (1, 0)$ for odd N and $(f_0, f_1) = (0, N/2)$ for even N.

Summary

Diagonals

Fibonacci polynomials: $F_0(x) = 0$, $F_1(x) = 1$ and $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$ $F_9(x) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8$ and $F_{10}(x) = 5x + 20x^3 + 21x^5 + 8x^7 + x^9$.

Pólva's theorem

Constant terms

Rupert's problem

• Compute using the definition: $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$.

• [Folkore]: Use binary powering to compute M_N , where $M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}''$:

N₋th terms

000000

$$M_n(x) = \begin{cases} M_{n/2}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases}$$

• Idea: Write $F_N(x) = f_0 + f_1 x + \cdots + f_N x^N$. Then $(f_k)_{k\geq 0}$ is **P-finite**:

$$f_{k+2} = rac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_k \quad ext{ for } k \geq 0$$

with $(f_0, f_1) = (1, 0)$ for odd N and $(f_0, f_1) = (0, N/2)$ for even N.

Summary

Diagonals

Fibonacci polynomials: $F_0(x) = 0$, $F_1(x) = 1$ and $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$

- $F_9(x) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8 \text{ and } F_{10}(x) = 5x + 20x^3 + 21x^5 + 8x^7 + x^9.$ $\bullet \text{ Compute using the definition: } F_{n+2}(x) = xF_{n+1}(x) + F_n(x).$
- [Folkore]: Use binary powering to compute M_N , where $M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}''$:

N₋th terms

000000

$$M_n(x) = \begin{cases} M_{n/2}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases} \qquad O(N \log(N))$$

Pólva's theorem

Constant terms

Rupert's problem

• Idea: Write $F_N(x) = f_0 + f_1 x + \cdots + f_N x^N$. Then $(f_k)_{k\geq 0}$ is **P-finite**:

$$f_{k+2} = rac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_k \quad ext{ for } k \geq 0.$$

with $(f_0, f_1) = (1, 0)$ for odd N and $(f_0, f_1) = (0, N/2)$ for even N.

Summary

Diagonals

Fibonacci polynomials: $F_0(x) = 0$, $F_1(x) = 1$ and $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$

 $F_9(x) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8 \text{ and } F_{10}(x) = 5x + 20x^3 + 21x^5 + 8x^7 + x^9.$ $\bullet \text{ Compute using the definition: } F_{n+2}(x) = xF_{n+1}(x) + F_n(x).$

• [Folkore]: Use binary powering to compute M_N , where $M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}''$:

N₋th terms

000000

$$M_n(x) = \begin{cases} M_{n/2}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases} \qquad O(N \log(N))$$

Pólva's theorem

Constant terms

Rupert's problem

• Idea: Write $F_N(x) = f_0 + f_1 x + \cdots + f_N x^N$. Then $(f_k)_{k\geq 0}$ is **P-finite**:

$$f_{k+2} = \frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_k \quad \text{ for } k \ge 0,$$

with $(f_0, f_1) = (1, 0)$ for odd N and $(f_0, f_1) = (0, N/2)$ for even N.

Main result E: Beating binary powering

"The development of fast algorithms is slow!"

A polynomial C-finite sequence $(u_n(x))_{n\geq 0}\in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$u_{n+r}(x) = c_{r-1}(x)u_{n+r-1}(x) + \cdots + c_0(x)u_n(x),$$

for some polynomials $c_0(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.

Theorem (Bostan, Neiger, Y., 2023)

Given a polynomial C-finite sequence $(u_n(x))_{n\geq 0}$, one can compute $u_N(x)$ in O(N) operations in \mathbb{K} .

Corollary

Given a polynomial matrix M(x), one can compute $M(x)^N$ in O(N) field operations.

Summary

DYZ numl 0000

Diagonals

lso 0000

N-th terms

Pólya's theorem ●○ Constant terms

Rupert's problem

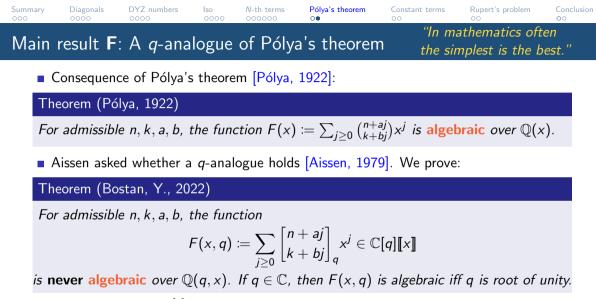
Conclusion 00

Chapter 7: *On the q-analogue of Pólya's Theorem*

Specifically, if n, k, a, b satisfy the conditions stated earlier, is the function

$$F(x, q) = \sum_{t=0}^{\infty} \begin{bmatrix} n+at \\ k+bt \end{bmatrix}_{q} x^{t}$$

algebraic? That is, does there exist a nonzero polynomial P(x, y, z) whose coefficients are constants (say, complex numbers) such that P(x, q, F(x, q)) = 0, for all x and q? [Aissen, 1979]



• $u_n(q) = {n \brack k}_q := \frac{[n]_q!}{[k]_q! [n-k]_q!}$, where $[n]_q! := (1+q) \cdots (1+q+\cdots+q^{n-1})$. • Idea: It holds that $(u_n(q))_{n \ge 0}$ is *q*-holonomic. Summary

DYZ numb

Diagonals

lso 0000 N-th terms

Pólya's theorem Con

Constant terms

Rupert's problem

Conclusic 00

Chapter 8: *Representation of sequences as constant terms*

$$\sum_{k=0}^{n} {\binom{n}{k}}^2 {\binom{n+k}{k}}^2 = \operatorname{ct}\left[\left(\frac{(x+y)(z+1)(x+y+z)(y+x+1)}{xyz}\right)^n\right].$$

Main result G: Describing Constant terms \cap C-finite sequences

N_th terms

• A sequence A(n) is a constant term if it can be represented as

 $A(n) = \operatorname{ct}[P(\boldsymbol{x})^n Q(\boldsymbol{x})],$

Pólva's theorem

Constant terms

0.

Rupert's problem

where $P, Q \in \mathbb{Q}[\mathbf{x}^{\pm 1}]$ are Laurent polynomials in $\mathbf{x} = (x_1, \dots, x_d)$.

Question (Zagier, 2018; Gorodetsky, 2021; Straub, 2022)

Iso

Which **P-finite sequences** are constant terms? Specifically: Are the Fibonacci numbers a constant term sequence?

Theorem (Bostan, Straub, Y., 2023)

Summary

Diagonals

Let A(n) be a C-finite sequence. A(n) is a constant term if and only if it has a single characteristic root λ and $\lambda \in \mathbb{Q}$.

Summary 000 Diagonals DYZ numl

s **Iso** 0000

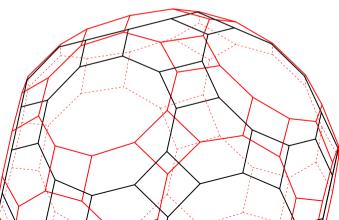
N-th terms 000000 Pólya's theorem

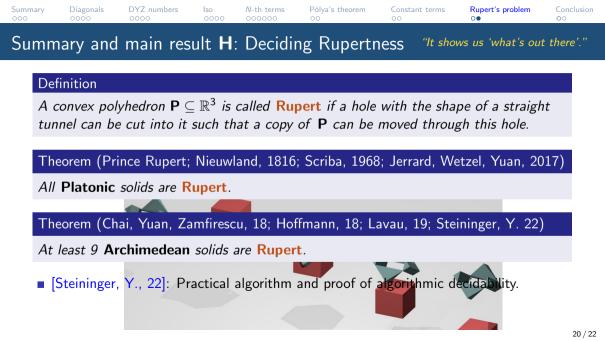
Constant terms

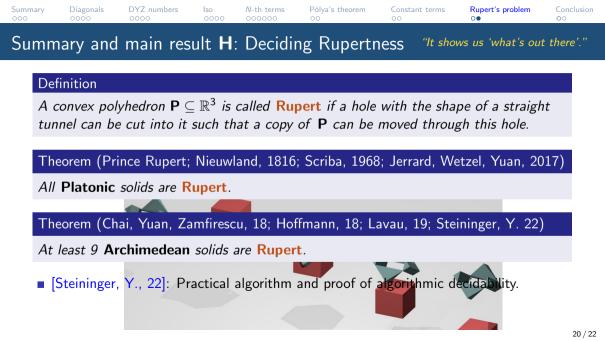
Rupert's problem

Conclusion 00

Chapter 9: On Rupert's problem







Summary Diagonals DYZ numbers Iso N-th terms Pólya's theorem Constant terms Rupert's problem Conclusion

- **A** Diagonals of products of $(1 x_1 \cdots x_n)^R$ are hypergeometric functions.
- **B** The generating functions of the Dubrovin-Yang-Zagier numbers are algebraic.
- \Box Iso(t) is a quotient of hypergeometric functions and increasing. Thus the shape of a projection of the Clifford torus is uniquely determined by its isoperimetric ratio.
- **D** We can compute the *N*-th term of a *q*-holonomic sequence faster than previously.
- **E** We can compute the *N*-th term of a **polynomial C-finite sequence** faster.
- **E** The q-analogue of Pólya's theorem holds if and only if q is a root of unity.
- **G** A **C-finite sequence** is a **constant term** iff it has 1 characteristic root λ and $\lambda \in \mathbb{Q}$.
- **H** Rupertness is decidable and the truncated icosidodecahedron is Rupert.

Perspectives and open questions

Diagonals

Summary

"Curiouser and curiouser!"

Constant terms

Rupert's problem

Conclusion

22 / 22

- A? Describe **Diagonals** among **D-finite** functions.
- B? Given a D-finite function, how to prove or disprove that it is algebraic in practice?

Pólva's theorem

C? Given a D-finite function/P-finite sequence, how to prove that it is increasing?

N-th terms

- **D**? Compute *N*-th terms in some **P**-finite sequences faster than in $\tilde{O}(\sqrt{N})$ operations.
- **E** Compute the *N*-th term of an integer **C**-finite sequence in O(N) bit complexity.
- F? Does there exist a suitable notion of "q-algebraicity"?
- G? Describe Constant terms among Diagonals or P-finite sequences.
- H? Prove or disprove that the Rhombicosidodecahedron is Rupert.

Bonus: Definition of ${}_{p}F_{q}$ and algebraicity

lso

Diagonals

Summary

The generalized hypergeometric function with parameters a_1, \ldots, a_p and b_1, \ldots, b_q is:

Pólva's theorem

Constant terms

$$_{p}F_{q}([a_{1},\ldots,a_{p}];[b_{1},\ldots,b_{q}];t)\coloneqq\sum_{j\geq0}rac{(a_{1})_{j}\cdots(a_{p})_{j}}{(b_{1})_{j}\cdots(b_{q})_{j}}rac{t^{j}}{j!},$$

where $(x)_n := x \cdot (x+1) \cdots (x+n-1)$ is the rising facorial. **Furnsion**, Y., 2023 Can also handle the case: $a_i, b_k \notin \mathbb{Q}$ and $a_i - b_k \in \mathbb{Z}$.

N-th terms

Rupert's problem

.

Bonus: Definition of ${}_{p}F_{q}$ and algebraicity

Summary

Diagonals

Theorem (Christol, 1986 and Beukers, Heckman, 1989)

Assume that the rational parameters $\{a_1, \ldots, a_p\}$ and $\{b_1, \ldots, b_{p-1}, b_p = 1\}$ are disjoint modulo \mathbb{Z} . Let N be their common denominator. Then

N_th terms

 $_{p}F_{p-1}([a_{1},\ldots,a_{p}],[b_{1},\ldots,b_{p-1}];t)$ is

Pólva's theorem

Constant terms

Rupert's problem

.

algebraic if and only if for all $1 \le r < N$ with gcd(r, N) = 1 the numbers $\{exp(2\pi ira_j), 1 \le j \le p\}$ and $\{exp(2\pi irb_j), 1 \le j \le p\}$ interlace on the unit circle.

globally bounded if and only if for all 1 ≤ r < N with gcd(r, N) = 1, one encounters more numbers in {exp(2πira_j), 1 ≤ j ≤ p} than in {exp(2πirb_j), 1 ≤ j ≤ p} when running through the unit circle from 1 to exp(2πi).

[Fürnsinn, Y., 2023] Can also handle the case: $a_j, b_k \notin \mathbb{Q}$ and $a_j - b_k \in \mathbb{Z}$.

Bonus: DYZ-like numbers

Zagier's problem

Find
$$(\alpha, \beta) \in \mathbb{Q}^* \times \mathbb{Q}^*$$
 such that $u_n \cdot (\alpha)_n \cdot (\beta)_n \cdot \gamma^n \in \mathbb{Z}$ for some $\gamma \in \mathbb{Z}^*$.
 $(x)_n \coloneqq x \cdot (x+1) \cdots (x+n-1)$.

#	и	V	ODE order	degree	#	и	V	ODE order	degree
an	3/5	4/5	2	120	f_n	19/60	49/60	4	155520
b _n	2/5	9/10	4	120	gn	19/60	59/60	4	46080
Cn	1/5	4/5	2	120	h_n	29/60	49/60	4	46080
d_n	7/30	9/10	4	155520	in	29/60	59/60	4	155520
en	9/10	17/30	4	155520					

Theorem (Bostan, Weil, Y., 2023)

The sequences $(a_n)_{n\geq 0}, (b_n)_{n\geq 0}, (c_n)_{n\geq 0}, \dots, (i_n)_{n\geq 0}$ are solutions to Zagier's problem.

- Estimates for degrees based on numerical monodromy group computations.
- Proof of algebraicity: Done: a_n, b_n, c_n . In progress: $d_n, e_n, f_n, g_n, h_n, i_n$.