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Introduction
©00

Motivating examples

m Let F(t,u) =3, >0 ankt"u* be the generating function of walks in N2 which
have n steps in { 7, \,} and end at level (height) k. One finds:

F(t,u) — F(t,0)

F(t,u) =1+ tuF(t,u)+t , .
1- 14t __
It follows that:  F(t,0) = — In particular: F(t,0) € Q(t).
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m Let F(t,u) =3, >0 ankt"u* be the generating function of walks in N2 which
have n steps in { 7, \,} and end at level (height) k. One finds:
F(t7 U) — F(t7 0)

F(t,u) =1+ tuF(t,u)+t .
u

1- 14t S
- In particular: F(t,0) € Q(t).

It follows that:  F(t,0) =

m Modelling [Bonichon, Bousquet-Mélou, Dorbec, Pennarun, 2006] special Eulerian
planar orientations gives rise to:

Fi(t,u) =14 t- (u+ 2uFi(t, u)? + 2uF(t, 1) + LB eALY
Fo(t,u) = t - (2uFy(t, u)Fa(t, u) + uFi(t, u) + uFa(t, 1) + 20 uR(tD)
Again: G = F1(t,0) and F»(t,0) are algebraic functions, for example:

64t°G?+2t (24 — 36t + 1) G*—(15¢° — 9¢* — 19t + 1) G+£7+27t*-19t+1 = 0.
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Discrete Differential Equations (DDEs) with one catalytic variable

m The divided difference operator (discrete derivative):

A, Qu][t] — Q[u][t].
F(t,u) — F(t,a)

F(t
(tu) = u—a
m A is the j-th iteration of A,. Explicitly:
. Ft,u—Ft,a—u—aauFt,a_..._(“—.ia)jg{l/:t,a
A{;H'F(t, u): ( ) ( ) ( ) ( ) J! ( )
(u—ap+
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Discrete Differential Equations (DDEs) with one catalytic variable

m The divided difference operator (discrete derivative):

A, Qu][t] — Q[u][t].
F(t,u) — F(t,a)

F(t
() s =
m A is the J-th iteration of A,. Explicitly:
. F(t,u) — F(t,a) — (u— a)d,F(t,a) — - — = ay@’Fta
A{?)JrlF(t’u):( )~ F(t,2) — (v~ 2)9uF(t, 3) (t,a)
(u—ay+!

m For polynomials f(u) € Q[u] and Q € Q[x,y1 ..., y«k, t, u] consider the equation
F(t,u) = f(u) + t- Q(F(t,u), AsF(t,u),..., ALF(t, ), t, u), (DDE)
where a € Q (usually 0 or 1) and k € N (the order of the DDE).
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m In 1960s, Tutte reduced many combinatorial problems to studying DDEs.
E.g.: [Tutte, 1962] and [Brown, Tutte 1964]
m In 1986 Popescu proved the “General Néron desingularization” [Popescu, 1986].
m [Bandarier, Flajolet 2002]: Universal “Kernel method” for linear DDEs.
m In 2006: The unique solution of any DDE is an algebraic function and effective
method to compute the minimal polynomial [Bousquet-Mélou, Jehanne, 2006].
m In 2015 [Hauser, Rond] organize a conference on “Artin Approximation”:
Popescu’s Theorem also implies algebraicity of DDEs (but in a non-effective way).
m [Buchacher, Kauers, 2020]: Linear systems of DDEs have algebraic solutions
(effective proof).
m [Bostan, Chyzak, Notarantonio, Safey El Din, 2022]: Fast algorithms for order 1.
m New: [Notarantonio, Y., 2022]: Effective proof that systems of DDEs have
algebraic solutions.
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Scalar case
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Main result for scalar equations

Theorem (Bousquet-Mélou, Jehanne, 2006)

Let k >1,a€ Qand Q € Q[x,y1,...,¥k, t,u], f(u) € Q[u]. There exists a unique
solution F(t,u) € Q[u][t] of the functional equation

F(t,u) = f(u) + t- Q(F(t,u), AF(t,u),...,AKF(t, u),t,u),

and F(t,u) is algebraic over Q(t, u). Moreover, there exists an algorithm for
computing the minimal polynomial of F(t, u).
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Scalar case
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Sketch of proof (generic case)

m Let E be the polynomial in x, zy,...,z, 1,t, u that is induced by DDE:

E(u) = E(F(t,u), F(t,0),...,0" YF(t,0),t,u) = 0.
—— —— N—_———

X P41} Zj_1
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Sketch of proof (generic case)

m Let E be the polynomial in x, zy,...,z, 1,t, u that is induced by DDE:
E(u) == E(F(t,u), F(t,0),...,0" 'F(t,0),t,u) = 0.
—— —
X 20 Zk—1

m Take the derivative of E(u) = 0 with respect to u:
OuF(t,u) - OxE(u) + 0,E(u) = 0. (OxE(u) is the "kernel™)
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m Let E be the polynomial in x, zg, .. ., Zk_1, t, u that is induced by DDE:

E(u) == E(F(t,u), F(t,0),...,0" 'F(t,0),t,u) = 0.
—— —— —_———
X 20 Zk—1
m Take the derivative of E(u) = 0 with respect to u:
OuF(t,u) - OxE(u) + 0,E(u) = 0. (OxE(u) is the "kernel™)

m Any solution v = U(t) of OxE(u) = 0 also implies 9, E(u) = 0.
m Obtain 3 equations (E(u) = 0,0xE(u) = 0,9,E(u) = 0) for k + 1 + 1 variables.
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m Take the derivative of E(u) = 0 with respect to u:
OuF(t,u) - OxE(u) + 0,E(u) = 0. (OxE(u) is the "kernel™)

m Any solution v = U(t) of OxE(u) = 0 also implies 9, E(u) = 0.
m Obtain 3 equations (E(u) = 0,0xE(u) = 0,9,E(u) = 0) for k + 1 + 1 variables.

m If 0,E(u) = 0 has k distinct solutions Us, . .., Uy, we can consider:
E(u;) =0, F(t, Ui) & xi,
Saup = § «E(ui) =0, fori=1,... k. ! F(t,0) < z,
duE(u;) = 0. Ui < u;.
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Sketch of proof (generic case)

m Let E be the polynomial in x, zg, .. ., Zk_1, t, u that is induced by DDE:

E(u) == E(F(t,u), F(t,0),...,0" 'F(t,0),t,u) = 0.
—— —— —_———
X 20 Zk—1
m Take the derivative of E(u) = 0 with respect to u:
OuF(t,u) - OxE(u) + 0,E(u) = 0. (OxE(u) is the "kernel™)

m Any solution u = U(t) of OxE(u) = 0 also implies 9,E(u) = 0.
m Obtain 3 equations (E(u) = 0,0xE(u) = 0,9,E(u) = 0) for k + 1 + 1 variables.
m If 0,E(u) = 0 has k distinct solutions Us, . .., Uy, we can consider:
E(u;):O, F(ts Uf)Hva
Saup = { OcE(u)) =0, fori=1,... k. 9, F(t,0) ¢ z,
9,E(u;) = 0. Ui < uj.

We find: 3k equations and 3k variables. Hope: the system Sq, is 0-dimensional.
m In that case can use elimination algorithms and find the annihilating polynomial. ¢ ,,,
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Sketch of proof

m Two issues:
OxE(u) = 0 does not always have k distinct solutions.
Is Squp really 0-dimensional?
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Scalar case
00@000

Sketch of proof

m Two issues:
OxE(u) = 0 does not always have k distinct solutions.
Is Squp really 0-dimensional?

m Given the DDE
F(t,u) = f(u)+t- Q(F(t,u), AF(t,u),...,ARF(t,u),t, u),
consider the perturbed DDE.:
G(t,u,€) = F(u)+t"-Q(G(t,u,€), A,G(t,u€),...,ANG(t,u,€), t*, u)+
m G(t,u,€) algebraic over Q(t, u,€) = F(t,u) algebraic over Q(t, u).

Let Eg be the numerator of DDE,. 0xEg(u) = 0 has k distinct solutions in Q(e)[t%]].

The ideal (Squp) : det(Jacs,,,)* is O-dimensional and contains the minimal poly. of G. /
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Sketch of proof (Lemma 1)

Let Eg be the numerator of DDE.. dxEg(u) = 0 has k distinct solutions in Q(e)I[t%]].
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Scalar case
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Sketch of proof (Lemma 1)

Let Eg be the numerator of DDE.. dxEg(u) = 0 has k distinct solutions in Q(e)I[t%]].

m The equation 0xEg = 0 has the form:

k
uk =kt + 2 Z uk=19,. Q(F(t, u), ..., AXF(t,u), 2, u)
i=0
m Newton's algorithm implies that we find k solutions of the form

U(t) = e- t5 - ¢* + O(£5),

for ¢ a primitive k-th root of unity.
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Sketch of proof (Lemma 2)

The ideal (Squp) : det(Jacs,,,)* is O-dimensional and contains the minimal poly. of G.
m Recall: Eg(u) == Eg(F(t,u), F(t,0),...,05 1F(t,0),t,u) where E¢ describes
G(t,u,€) = f(u)+t"-Q(G(t,u,€), AyG(t,u€),...,ANG(t,u,€), t*, u)+tc" A Gt 1 ).
Saup = {Ec(ui) = 0,0xEc(ui) =0,0,Ec(uj) =0:i=1,....k}.
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G(t,u,€) = f(u)+t"-Q(G(t,u,€), A,G(t,u€),...,ANG(t,u,€), t”, u)+

Saup = {Ec(ui) = 0,0xEc(ui) =0,0,Ec(uj) =0:i=1,....k}.
m Application of Hilbert's Nullstellensatz: Lemma 2 holds if the Jacobian matrix
Jacs,,, € @[[t%]]‘?’kx‘?’k of Squp is invertible at
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Sketch of proof (Lemma 2)

The ideal (Squp) : det(Jacs,,,)* is O-dimensional and contains the minimal poly. of G.
m Recall: Eg(u) == Eg(F(t,u), F(t,0),...,05 1F(t,0),t,u) where E¢ describes
G(t,u,€) = f(u)+t"-Q(G(t,u,€), A,G(t,u€),...,ANG(t,u,€), t”, u)+

Saup = {Ec(ui) = 0,0xEc(ui) =0,0,Ec(uj) =0:i=1,....k}.
m Application of Hilbert's Nullstellensatz: Lemma 2 holds if the Jacobian matrix
Jacs,,, € @[[t%]]‘?’kx‘?’k of Squp is invertible at

(G(t, Uh), ..., G(t, Up), Us(t), ..., Uk(t), G(£,0), ..., 05 2G(t,0)) € Qle)[t+]3*.

m Bousquet-Mélou and Jehanne compute the determinant explicitly:

det(Jacs,,,) =r-[[(¢' = &) H (O2E(U;)O2E(U)) — 9x04E(U;)?) + O(t*) # 0

i< 9/22
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Summary of the proof and algorithm in the scalar case

m Strategy of the proof:
Given a DDE for F(t, u) consider the perturbed DDE.:

G(t,u,€) = f(u)+t"-Q(G(t, u,€), A.G(t, u,€),...,ANG(t,u,€), t”, u)+1 A Gt 1 c).

and let Eg be the defining polynomial in the the variables x, zy, ..., zk_1, t, U, €.
Prove that 8y Eg(u) = 0 has k disctinct solutions u = U(t) in Q(e)[t+].
Define S = (E, 0xEg, 0uEg) and let S4yp, be the duplicated system.
Show that (Squp) : det(Jacs,,,)> is 0-dimensional by proving: Jacs,,, is invertible.

m Algorithm:
Define Eg € Q[x, 20, - - - . Zk 1, t, u, €] as the numerator of of DDE..
Compute 0xE and 9,E. Define Squp in x1,...,%Xn, U1, ..., Up, 20, - . ., Zk_1.

Saturate Sqyp by adding the equation m - det(Jacsdup) — 1 =0 for a variable m.
Compute a non-zero element of Sgar N Q[z0, t].
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New result: extension for systems

Theorem (Notarantonio, Y., 2022)

Let n,k > 1 be integers and fi,...,f, € Q[u], Q1,..., Qn € Q[y1,- -, Yn(k+1), t, U] be
polynomials. Set VKF := F,A,F,..., AKF. Then the system of equations

Fi=f(u)+t- Q(VFF, ..., V¥Fo, t, ),
Fo= fa(u) + t- Qu(V¥F1, ..., V*Fp, t,u)
admits a unique vector of solutions (F1, ..., F,) € Q[u][[t]]", and all its components

are algebraic functions over Q(t, u).

11/22



System case
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Theorem (Notarantonio, Y., 2022)

A system of DDEs with one catalytic variable admits a unique vector of solutions
(Fi,...,Fn) € Q[u][[t]]", and all its components are algebraic functions over Q(t, u).

Example (introduced and solved in [Bonichon,Bousquet-Mélou,Dorbec,Pennarun, 2006]):

Fi(t,u)=1+t- ( + 2uFy(t, u)? + 2uFy(t,1) + uFl(t“) UFl(t 1)),
Fo(t,u) =t (2uFi(t, u)Fa(t, u) + uFi(t, u) + uFp(t, 1) + UFZ(t u)— Fz(t 1))

u—

It holds: G = F1(t,0) and F»(t,0) are algebraic functions. For example:

64t3G> +2t (24t2 — 36t + 1) G*— (156> — 9t> — 19t + 1) G+ 2 +27t2 — 19t +1 = 0.

12/22
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Generic system case

m The system Fi=f(u)+t- Qu(VKFL,...,V*F, t,u),

Fo=fo(u) + t- Qu(V5Fr, ..., V*Fy, t, )

defines n polynomial equations E; = 0,...,E, =0in Q[x1,.... X0, 20, ... Zpk—1, U, t].

13/22
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Generic system case

m The system Fir=f(u)+t- Qu(V*F,...,V*F,, t,u),

Fo=fo(u) + t- Qu(V5Fr, ..., V*Fy, t, )

defines n polynomial equations E; =0,...,E, =01in Q[x1,..., X0, 20, .. Znk_1, U, t].
m The “derivative” of (Ei, ..., E,) with respect to u:
OB ... OuE\ [OuF =
oo S R N Y (1)
0B ... 0uE,) \OuFn 8,E,
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Generic system case

m The system Fir=f(u)+t- Qu(V*F,...,V*F,, t,u),

Fo=fo(u) + t- Qu(V5Fr, ..., V*Fy, t, )

defines n polynomial equations E; =0,...,E, =01in Q[x1,..., X0, 20, .. Znk_1, U, t].
m The “derivative” of (Ei, ..., E,) with respect to u:
OB ... OuE\ [OuF 9,E:
: . : : + : =0. (1)
0B ... 0uE,) \OuFn 9,E,
m Now define: 0. E, 0. E, OB ... OgEn-1 Oy, En
X1 co Xn . . . .
Det := det : ; and P :=det 0 E E 5 :E 5 : c
Xn—1 1 e Xn—1 n—1 Xp—15=n
Oubn o Onb OuE ... OEra1  OuE,

m Observation: (1) and Det = 0 imply P = 0.
Therefore we have: n+ 2 equations, and n+ nk + 1 variables. 13/22



System case
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Generic system case

m Equations: S = {Eq(u), ..., En(u), Det(u), P(u)}.
m If Det(u) = 0 has nk distinct solutions in @[t%]] then define the system:

Ei(ui) = Ex(ui) = - - - = Ep(ui) = 0,
Sdup = { Det(u;) =0, fori=1,...,nk.
P(ui) = 0.
m In total (n+ 2) - nk = nk(n + 2) equations.
m Variables: X1, ..., X2k, 20, - -+ s Znk 1, UL,y - - -, Uk = n°k + nk 4 nk = nk(n + 2).
F(U)) BDIF(t,) Uj

m = Can hope for a 0-dimensional system.

14/22



System case
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Outline of the proof for systems in the general case

Given a system of DDEs for F;(t, u) consider the perturbed system DDE..

Prove that Det(u) = 0 has nk disctinct solutions u = U(t) in Q(e)l[t%]].

Define S = (Ex, ..., En, Det, P) and let Sqyp be the duplicated system in
nk(n+ 2) variables.

Show: (Squp) : det(Jacs,,,)> is 0-dimensional by proving: Jacs,,, is invertible.
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Sketch of proof: Step 1, deformation
F = fl(u) +t- Ql(ka]_7 ceey Van, t, u),

Fn=fo(u) +t- Qu(V¥Fy, ..., VKF, t, u)
\
Gl - f]_(U) +t% - Ql(valava27"' 7vana t(\au) +t- Fk : _:'7 171, AkGiy

Gn = fa(u) + 7 Qu(VKGL, VG, ..., VKGy t 7 u) + 1" 50, ARG,

where +;; — /“ and vij =t ', and o > 7 > 0 are chosen sufficiently large.
m It holds: G;(t,u,¢) algebraic over Q(t, u,€) = Fi(t, u) algebraic over Q(t, u).
m Each equation for G; induces a polynomial equation:
E(V*G,VkGy, ..., V*Gy t,u,e) =0, i=1,...,n.
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Step 2: Definition of Det(u) and proof of nk distinct solutions
OE1 ... O E

Det = det : . :
OwEn ... OxEn

The equation Det(u) = 0 has nk distinct solutions in @(e)[[t%]]
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System case
00000000

Step 2: Definition of Det(u) and proof of nk distinct solutions
OE1 ... O E

Det = det : . :
OwEn ... OxEn

The equation Det(u) = 0 has nk distinct solutions in Q(e)[[t%]]

m We have

mlfk mlfk

—u™ + tek'ymu tek’yly,,u
Det(u) = det : + O(tauM_nk),

k —ymn + tEk’}/n)nUm”_k

tekvn)lu’""_
m Using v;; = ik and 7;; = t°, we get Det = []"_;(—u* + te*j*) mod t™1.

J
m Newton's algorithm:

Up=ct j -tk +O(tk), forl=1,....,kandj=1,....n, with kK =1.

17/22
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Outline of the proof for systems in the general case

Given a system of DDEs for F;(t, u) consider the perturbed system DDE..

Prove that Det(u) = 0 has nk disctinct solutions u = U(t) in Q(e)l[t%]].

Define S = (Ex, ..., En, Det, P) and let Sqyp be the duplicated system in
nk(n+ 2) variables.

Show: (Squp) : det(Jacs,,,)> is 0-dimensional by proving: Jacs,,, is invertible.
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Step 4: Jacs,,, is invertible (very brief sketch)

A1 0 B:
— 1
Jacs,,, = L | e Qe)[er ]yt k(nt2),
0 Ank Bnk
O E (U)o 0EP(U)  0,EP(U) S () N S ()
A= o B0y . 0B a,ER ) | B anER ) aznk,lES")(Uf)
0, Det(U) ... 8,Det(U;) 8,Det)(U)) d,DetN(U)) ... 8, Det)(U)
2 PO ... 3, PO(U)) aP<>(U) P ... B, POU)
= det(Jacs,,,) = Hdet (Jaci(U;))) - det(A), for

Jac;(u) € @(6)[11][['?]]("“)X 1) and A € Q(e)[[+])"

Method: Analyze the (lowest) valuation in t to show non-vanishing.
19/22
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Special Eulerian planar orientations

m [Bonichon, Bousquet-Mélou, Dorbec, Pennarun, 2006] consider and solve:

Fi(t,u) =1+t (u+2uF(t, u)? + 2uFy(t, 1) + u B uAEL)Y
Fo(t,u) = t - (2uFy(t, u)Fa(t, u) + uFy(t, u) + uFa(t, 1) + 20 uR(tl))
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Computations and conclusion
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Special Eulerian planar orientations

m We get polynomial equations

Er=(1—-x1) (u—1)+t-(2u?x? — vz + 20z — 2ux? + u? + uxg — 2uz — u),
Ex=x-(1—u)+t- (2U2X1X2 + U%x; — 2uxixo — uxy + uxp — uzy).

m Then define

Det = (4tu’xy — dtuxy + tu — u + 1)(2tu’xy — 2tuxy + tu — u + 1),
P:—2tX1X2—tX1+tX2—1.’Zl—X2—|—P1-U+P2-U2+P3'U3,

B Squp =
(Ex(x1,x2, 20, 21, tn), Ea(x1, X2, 20, 21, u1), Det(xq, x2, 20, 21, t1), P(x1, X2, 20, 21, U1),
(El(X3a X4, 20,21, U2)7 EZ(X3aX4) 20, 21, U2)7 Det(X?n X4y 20, Z1, U2), P(X3a X4, 20, 71, U2))
m Compute a generator of (Squp, m - (u1 — up) — 1) N Q[zo, t].
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Computations and conclusion
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Special Eulerian planar orientations in Maple

El := numer(-x1+1 + 2kt*xuxx172 + 2xtxu*xzl + txux(-u*z0+x1)/(u-1)+t*u);
E2 := numer(-x2 + 2*tkruxxl*x2 + truxxl + truxzl + truwk(-uxzl+x2)/(u-1));
Jac := Matrix([[diff(E1, x1),diff(E1, x2)],[diff(E2, x1),diff(E2, x2)1]1);

Det LinearAlgebra[Determinant] (Jac) ;
Pm := Matrix([[diff(E1l, x1), diff(E2, x1)], [diff(El, uw), diff(E2, w1l);

LinearAlgebra[Determinant] (Pm) ;

S := [E1, E2, det, P];
S1 := op(subs(xl=x1,x2=x2,u=ul,8);
S2 := op(subs(x1=x3,x2=x4,u=u2,8);

Sdup := [S1,S2, m*(ul - u2) - 1];
G := polynomial_elimination(Sdup, z0, t);

(20 — 1) (2tz0 + t — 1) (64t320° + 48t°20% — 15t320 — 72t°20% + 2 + 9t°20 + -+ ) - -
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Summary and conclusion

m Systems of DDEs with one catalytic variable have algebraic solutions.
m There exists an algorithm for finding minimal polynomials of such solutions.

m Currently ongoing work on improving the efficiency and effective handling of more
catalytic variables.

22/22



	Introduction
	Scalar case
	System case
	Computations and conclusion

