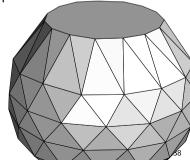
On Rupert's problem¹

Johannes Gutenberg-Universität Mainz

Jakob Steininger and Sergey Yurkevich

23rd October, 2025



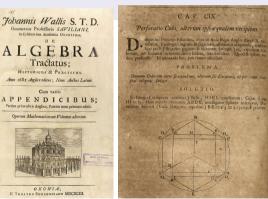
¹Based on arxiv.org/abs/2508.18475 and arxiv.org/abs/2112.13754

Prince Rupert's cube

Fact (Wallis, 1685)

It is possible to cut a hole inside the **unit cube** such that another **unit cube** can pass

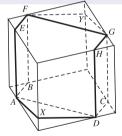
through this hole.



Prince Rupert's cube

Fact (Wallis, 1685)

It is possible to cut a hole inside the **unit cube** such that another **unit cube** can pass through this hole.



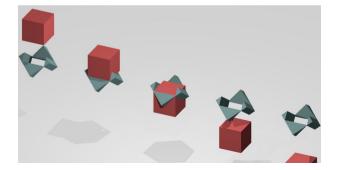
- How to understand this paradox? How to find the solution?
- Which other solids have this property? Is there a characterization?
- What is the "optimal" way to put a cube inside a cube? What about other solids?

Rupert's problem

Introduction

00000

- A convex polyhedron **P** is called *Rupert* if a hole with the shape of a straight tunnel can be cut into it such that a copy of **P** can be moved through this hole.
- Rupert's problem is the task to decide whether a given polyhedron is Rupert.



Nieuwland's number

Fact (Nieuwland, 1816)

It is possible to cut a hole inside the **unit cube** such that a **cube with side length** less than $3\sqrt{2}/4\approx 1.0606$ can pass through this hole.

Nieuwland's number

Fact (Nieuwland, 1816)

It is possible to cut a hole inside the **unit cube** such that a **cube with side length** less than $3\sqrt{2}/4 \approx 1.0606$ can pass through this hole.

- The largest number $\nu \in \mathbb{R}$ such that $\nu \mathbf{P}$ passes through some hole inside \mathbf{P} is called *Nieuwland number of* \mathbf{P} .
- For all solids it holds that $\nu \geq 1$.
- **P** is Rupert $\iff \nu(\mathbf{P}) > 1$.
- ν of the Cube is exactly $3\sqrt{2}/4$ [Nieuwland, 1816].

- The Cube is Rupert [conjectured by Prince_Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].

- The Cube is Rupert [conjectured by Prince_Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].
- The Tetrahedron and Octahedron are Rupert [Scriba, 1968].

- The Cube is Rupert [conjectured by Prince_Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].
- The Tetrahedron and Octahedron are Rupert [Scriba, 1968].
- The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].

- The Cube is Rupert [conjectured by Prince_Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].
- The Tetrahedron and Octahedron are Rupert [Scriba, 1968].
- The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].
- 8 out of 13 Archimedean solids are Rupert [Chai, Yuan, Zamfirescu, 2018].

- The Cube is Rupert [conjectured by Prince Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].
- The Tetrahedron and Octahedron are Rupert [Scriba, 1968].
- The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].
- 8 out of 13 Archimedean solids are Rupert [Chai, Yuan, Zamfirescu, 2018].

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

- The Cube is Rupert [conjectured by Prince Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].
- The Tetrahedron and Octahedron are Rupert [Scriba, 1968].
- The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].
- 8 out of 13 Archimedean solids are Rupert [Chai, Yuan, Zamfirescu, 2018].

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

All convex polyhedra have Rupert's property.

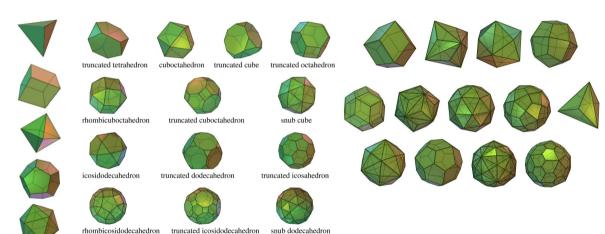
• 9 of 13 Archimedean solids are Rupert [Hoffmann, 2018] [Lavau, 2019].

- The Cube is Rupert [conjectured by Prince Rupert, proved by Wallis 1685].
- The Nieuwland number of the Cube is $3\sqrt{2}/4$ [Nieuwland, 1816].
- The Tetrahedron and Octahedron are Rupert [Scriba, 1968].
- The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].
- 8 out of 13 Archimedean solids are Rupert [Chai, Yuan, Zamfirescu, 2018].

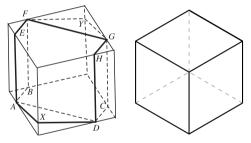
Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

- 9 of 13 Archimedean solids are Rupert [Hoffmann, 2018] [Lavau, 2019].
- 10 of 13 Archimedean solids and many other polyhedra are Rupert. Efficient way for proving Rupert's property. Theoretical algorithm for deciding. [S., Y., 2021].
- 11 of 13 Catalan solids are Rupert, improved optimization [Fredriksson, 2022].
- The **Noperthedron**: a counter example to the conjecture [S., Y., 2025].

Solids

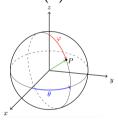


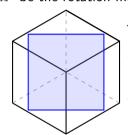
Definition of Rupert's problem



Definition of Rupert's problem

Let $M(\theta,\varphi):\mathbb{R}^3\to\mathbb{R}^2$ be an orthogonal projection map in direction $X(\theta,\varphi)\in\mathbb{R}^3$ and $R(\alpha): \mathbb{R}^2 \to \mathbb{R}^2$ be the rotation map.





$$X(\theta, \varphi) := (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)^t,$$

$$M(\theta,\varphi) := \begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0 \\ -\cos(\theta)\cos(\varphi) & -\sin(\theta)\cos(\varphi) & \sin(\varphi), \end{pmatrix},$$

$$R(\alpha) := \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

$$R(lpha) := egin{pmatrix} \cos(lpha) & -\sin(lpha) \ \sin(lpha) & \cos(lpha) \end{pmatrix}.$$

Definition

A point-symmetric polyhedron P has Rupert's property, if there exist 5 parameters $\alpha, \theta_1, \theta_2 \in [0, 2\pi)$ and $\varphi_1, \varphi_2 \in [0, \pi]$ such that

$$R(\alpha) \circ M(\theta_1, \varphi_1) \mathbf{P} \subset (M(\theta_2, \varphi_2) \mathbf{P})^{\circ}.$$

A basic (Las Vegas) algorithm

<u>Input</u>: A centrally symmetric polyhedron **P**.

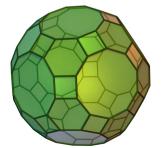
Output: The solution encoded by $\Psi = (\alpha, \theta_1, \theta_2, \varphi_1, \varphi_2) \in \mathbb{R}^5$ if **P** is Rupert.

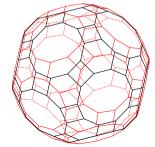
- (1) Draw θ_1 , θ_2 and α uniformly in $[0, 2\pi)$, and φ_1 , φ_2 uniformly in $[0, \pi]$.
- (2) Construct the two 3×2 matrices A and B corresponding to the linear maps $R(\alpha) \circ M(\theta_1, \varphi_1)$ and $M(\theta_2, \varphi_2)$. Compute the two projections of \mathbf{P} given by $\mathcal{P}' := A \cdot \mathbf{P}$ and $\mathcal{Q}' := B \cdot \mathbf{P}$.
- (3) Find vertices on the convex hulls of \mathcal{P}' and \mathcal{Q}' ; denote them by \mathcal{P} and \mathcal{Q} .
- (4) Decide whether \mathcal{P} lies inside of \mathcal{Q} by checking each vertex of \mathcal{P} .
- (5) If Step (4) yields a True, return the solution $\Psi = (\alpha, \theta_1, \theta_2, \varphi_1, \varphi_2)$. Otherwise, repeat Steps (1)-(5).

The Truncated Icosidodecahedron

Theorem (S., Y., 2021)

The Truncated Icosidodecahedron has Rupert's property.





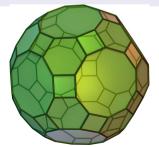
The Truncated Icosidodecahedron

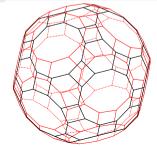
Theorem (S., Y., 2021)

The Truncated Icosidodecahedron has Rupert's property.

Proof.

 $\alpha = 0.43584, \theta_1 = 2.77685, \theta_2 = 0.79061, \varphi_1 = 2.09416, \varphi_2 = 2.89674,$ plus some verification of linear inequalities in Maple/SageMath.



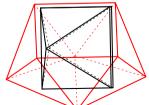


Platonic, Archimedean, Catalan and Johnson Solids

Theorem (S., Y., 2021)

In a few minutes it can be proven automatically that:

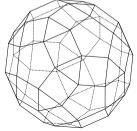
- 1 All 5 Platonic solids are Rupert.
- 2 At least 10 out of 13 Archimedean solids are Rupert.
- 3 At least 9 out of 13 Catalan solids are Rupert.
- 4 At least 82 out of 92 Johnson solids are Rupert.



Are all convex polyhedra Rupert?

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

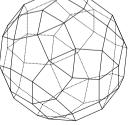
- All Platonic solids are Rupert.
- 3 Archimedean solids remain open. One of them is point-symmetric.



Are all convex polyhedra Rupert?

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

- All Platonic solids are Rupert.
- 3 Archimedean solids remain open. One of them is point-symmetric.
- Rhombicosidodecahedron natural candidate for disproving conjecture.



Are all convex polyhedra Rupert?

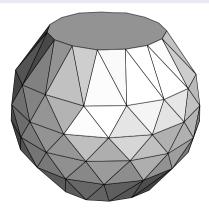
Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

- All Platonic solids are Rupert.
- 3 Archimedean solids remain open. One of them is point-symmetric.
- Rhombicosidodecahedron natural candidate for disproving conjecture.
- Rupertness: Probability that a random projection yields a solution.
- Can estimate confidence intervals for Rupertness.
- Conclusion: RID is significantly different from other regular solids.
 It is likely that RID is a counter example to the conjecture.

4 years later: The Noperthedron is not Rupert

Theorem (S., Y., 2025)

The Noperthedron, NOP, does not have Rupert's property.



Idea of proof

Partition the five-dimensional solution space

$$I=[0,2\pi)\times[0,\pi]\times[0,2\pi)\times[0,\pi]\times[-\pi,\pi)$$

into small parts and prove for each that no solution in that region exists.

Rough idea: Show that the "middle point" of any region does not yield a solution and argue with effective continuity of the parameters that this also excludes an explicit neighborhood around that point.

Idea of proof

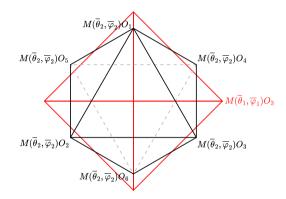
Partition the five-dimensional solution space

$$I = [0, 2\pi) \times [0, \pi] \times [0, 2\pi) \times [0, \pi] \times [-\pi, \pi)$$

into small parts and prove for each that no solution in that region exists.

- Rough idea: Show that the "middle point" of any region does not yield a solution and argue with effective continuity of the parameters that this also excludes an explicit neighborhood around that point.
- The **global theorem** is tailored for two generic projections of \mathbf{P} , when some vertex of the "smaller" projection $\mathcal{P} = R(\alpha)M(\theta_1, \varphi_1)\mathbf{P}$ is *strictly outside* the "larger" projection $\mathcal{Q} = M(\theta_2, \varphi_2)\mathbf{P}$.
- The **local theorem** can handle projections that look (almost) exactly the same, for instance if $\theta_1 \approx \theta_2$, $\varphi_1 \approx \varphi_2$ and $\alpha \approx 0$.

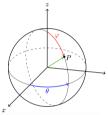
Motivation for global theorem



$$(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) = (0, 0, \pi/4, \tan^{-1}(\sqrt{2}), 0)$$

Starting point of the global theorem

Recall:



$$X(\theta,\varphi) := (\cos\theta\sin\varphi,\sin\theta\sin\varphi,\cos\varphi)^t,$$

$$M(\theta,\varphi) := \begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0 \\ -\cos(\theta)\cos(\varphi) & -\sin(\theta)\cos(\varphi) & \sin(\varphi), \end{pmatrix},$$

$$R(\alpha) := \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Lemma

Let $\varepsilon > 0$ and $|\theta - \overline{\theta}|, |\varphi - \overline{\varphi}|, |\alpha - \overline{\alpha}| \le \varepsilon$ then

- $||X(\theta,\varphi) X(\overline{\theta},\overline{\varphi})|| < \sqrt{2}\varepsilon,$

$$R_{\mathbf{x}}(\alpha) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, R_{\mathbf{y}}(\alpha) := \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix}, R_{\mathbf{z}}(\alpha) := \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

0000000

$$X(\theta,\varphi)^{t} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \cdot R_{y}(\varphi) \cdot R_{z}(-\theta), \quad M(\theta,\varphi) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \cdot R_{y}(\varphi) \cdot R_{z}(-\theta)$$

$$R(\alpha)M(\theta,\varphi) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \cdot R_z(\alpha) \cdot R_y(\varphi) \cdot R_z(-\theta).$$

Lemma

For any
$$\alpha, \beta \in \mathbb{R}$$
 one has $||R_{\mathsf{x}}(\alpha)R_{\mathsf{v}}(\beta) - \mathrm{Id}|| \leq \sqrt{\alpha^2 + \beta^2}$.

Sketch of proof: Write $R_x(\alpha)R_v(\beta) = UR_x(\Phi)U^{-1}$ and take trace to obtain:

$$\cos(\alpha) + \cos(\beta) + \cos(\alpha)\cos(\beta) = 1 + 2\cos(\Phi).$$

Jensen on $f(t) = \cos(\sqrt{t})$ shows LHS $\geq 1 + 2\cos(\sqrt{\alpha^2 + \beta^2})$, thus $|\Phi| \leq \sqrt{\alpha^2 + \beta^2}$.

First version of the global theorem

Recall the definition of Rupert's property

$$R(\alpha)M(\theta_1,\varphi_1)\mathbf{P}\subset (M(\theta_2,\varphi_2)\mathbf{P})^{\circ}.$$

If $\Psi \in \mathbb{R}^5$ is a solution, then for any vector $w \in \mathbb{R}^2$ it holds that

$$\langle R(\alpha)M(\theta_1,\varphi_1)S,w\rangle < \max_{P\in\mathbf{P}}\langle M(\theta_2,\varphi_2)P,w\rangle.$$

Theorem (Global theorem v0.1)

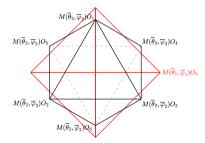
Let **P** be convex, pointsymmetric with radius 1. Assume:

$$\langle R(\overline{\alpha})M(\overline{\theta}_1,\overline{\varphi}_1)S,w\rangle > \max_{P\in \mathbf{P}}\langle M(\overline{\theta}_2,\overline{\varphi}_2)P,w\rangle + (\sqrt{2}+\sqrt{5})\varepsilon$$

for some $S \in \mathbf{P}$ and $w \in \mathbb{R}^2$ with ||w|| = 1, then there cannot be a solution $(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) \in [\overline{\theta}_1 \pm \varepsilon, \overline{\varphi}_1 \pm \varepsilon, \overline{\theta}_2 \pm \varepsilon, \overline{\varphi}_2 \pm \varepsilon, \overline{\alpha} \pm \varepsilon]$.

Example

- Consider the Octahedron $\mathbf{O} = \{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\} \subseteq \mathbb{R}^3$ and two projection directions $(\overline{\theta}_1, \overline{\varphi}_1) = (0, 0)$ and $(\overline{\theta}_2, \overline{\varphi}_2) = (\pi/4, \tan^{-1}(\sqrt{2}))$. Set $\overline{\alpha} = 0$.
- Goal: show this is no solution to Rupert's problem and there exists $\varepsilon > 0$ such that there is also no solution $(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha)$ with $|\overline{\theta}_i \theta_i|, |\overline{\varphi}_i \varphi_i|, |\alpha| \le \varepsilon$.



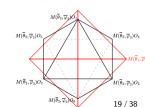
Example continued

Following the global theorem we first compute:

$$M(\overline{\theta}_1, \overline{\varphi}_1) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
 and $M(\overline{\theta}_2, \overline{\varphi}_2) = \begin{pmatrix} -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\ -\sqrt{6}/6 & -\sqrt{6}/6 & \sqrt{6}/3 \end{pmatrix}$.

We choose $S = O_3 = (0, 1, 0)$ and w = (1, 0), thus $\langle R(\overline{\alpha})M(\overline{\theta}_1, \overline{\varphi}_1)S, w \rangle = 1$.

$$\langle M(\overline{\theta}_2, \overline{\varphi}_2)P, w \rangle = \begin{cases} 0 & \text{for } P = M(\overline{\theta}_2, \overline{\varphi}_2)O_i \text{ with } i = 1, 6, \\ \sqrt{2}/2 & \text{for } P = M(\overline{\theta}_2, \overline{\varphi}_2)O_i \text{ with } i = 3, 4, \\ -\sqrt{2}/2 & \text{for } P = M(\overline{\theta}_2, \overline{\varphi}_2)O_i \text{ with } i = 2, 5. \end{cases}$$



Example continued

Following the global theorem we first compute:

$$M(\overline{\theta}_1, \overline{\varphi}_1) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
 and $M(\overline{\theta}_2, \overline{\varphi}_2) = \begin{pmatrix} -\sqrt{2}/2 & \sqrt{2}/2 & 0 \\ -\sqrt{6}/6 & -\sqrt{6}/6 & \sqrt{6}/3 \end{pmatrix}$.

We choose $S = O_3 = (0, 1, 0)$ and w = (1, 0), thus $\langle R(\overline{\alpha})M(\overline{\theta}_1, \overline{\varphi}_1)S, w \rangle = 1$.

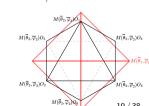
$$\langle M(\overline{\theta}_2, \overline{\varphi}_2)P, w \rangle = \begin{cases} 0 & \text{for } P = M(\overline{\theta}_2, \overline{\varphi}_2)O_i \text{ with } i = 1, 6, \\ \sqrt{2}/2 & \text{for } P = M(\overline{\theta}_2, \overline{\varphi}_2)O_i \text{ with } i = 3, 4, \\ -\sqrt{2}/2 & \text{for } P = M(\overline{\theta}_2, \overline{\varphi}_2)O_i \text{ with } i = 2, 5. \end{cases}$$

Thus if $\varepsilon > 0$ is chosen so that

$$1 > \sqrt{2}/2 + (\sqrt{2} + \sqrt{5})\varepsilon$$
, e.g., $\varepsilon = 0.08$

there is no solution in

$$(0,0,\pi/4,\tan^{-1}(\sqrt{2}),0)\pm\varepsilon\subset\mathbb{R}^5.$$



Actual Global theorem

Theorem (Global Theorem v1.0)

Let \mathbf{P} be a pointsymmetric convex polyhedron with radius 1 and let $S \in \mathbf{P}$. Let $w \in \mathbb{R}^2$ be a unit vector and denote $\overline{M_1} := M(\overline{\theta}_1, \overline{\varphi}_1)$, $\overline{M_2} := M(\overline{\theta}_2, \overline{\varphi}_2)$ as well as $\overline{M_1}^{\theta} := M^{\theta}(\overline{\theta}_1, \overline{\varphi}_1)$, $\overline{M_1}^{\varphi} := M^{\varphi}(\overline{\theta}_1, \overline{\varphi}_1)$ and analogously for $\overline{M_2}^{\theta}$, $\overline{M_2}^{\varphi}$. Finally set

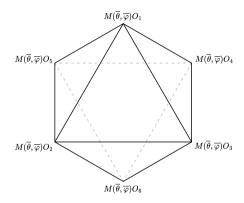
$$G := \langle R(\overline{\alpha})\overline{M_1}S, w \rangle - \varepsilon \cdot \left(|\langle R'(\overline{\alpha})\overline{M_1}S, w \rangle| + |\langle R(\overline{\alpha})\overline{M_1}^{\theta}S, w \rangle| + |\langle R(\overline{\alpha})\overline{M_1}^{\varphi}S, w \rangle| \right) - 9\varepsilon^2/2,$$

$$H_P \coloneqq \langle \overline{M_2}P, w \rangle + \varepsilon \cdot \left(|\langle \overline{M_2}^{\theta}P, w \rangle| + |\langle \overline{M_2}^{\varphi}P, w \rangle| \right) + 2\varepsilon^2, \quad \text{for } P \in \mathbf{P}.$$

If $G > \max_{P \in \mathbf{P}} H_P$ then there does not exist a solution to Rupert's condition with

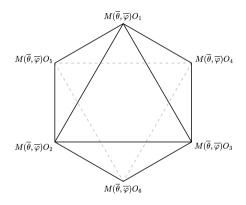
$$(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) \in [\overline{\theta}_1 \pm \varepsilon, \overline{\varphi}_1 \pm \varepsilon, \overline{\theta}_2 \pm \varepsilon, \overline{\varphi}_2 \pm \varepsilon, \overline{\alpha} \pm \varepsilon] \subseteq \mathbb{R}^5.$$

Motivation for local theorem: $\theta_1 = \theta_2$, $\varphi_1 = \varphi_2$, $\alpha = 0$



$$(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) = (\pi/4, \tan^{-1}(\sqrt{2}), \pi/4, \tan^{-1}(\sqrt{2}), 0)$$

Motivation for local theorem: $\theta_1 = \theta_2$, $\varphi_1 = \varphi_2$, $\alpha = 0$



$$A := M(\theta, \varphi)O_1,$$

$$B := M(\theta, \varphi)O_2,$$

$$C := M(\theta, \varphi)O_3$$

Fact:

$$||A||^2 + ||B||^2 + ||C||^2 = 2$$

⇒ no local solution from this direction

$$(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) = (\pi/4, \tan^{-1}(\sqrt{2}), \pi/4, \tan^{-1}(\sqrt{2}), 0)$$

 \blacksquare P_1, P_2, P_3 are all in front of the projection:

$$\langle X(\overline{\theta}, \overline{\varphi}), P_i \rangle > 0.$$

 \blacksquare P_1, P_2, P_3 are all in front of the projection:

$$\langle X(\overline{\theta},\overline{\varphi}),P_i\rangle>0.$$

■ The origin is inside the projected triangle $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$:

$$\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_1,M(\overline{\theta},\overline{\varphi})P_2\rangle > 0,$$

 $\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_2,M(\overline{\theta},\overline{\varphi})P_3\rangle > 0,$
 $\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_3,M(\overline{\theta},\overline{\varphi})P_1\rangle > 0.$

 \blacksquare P_1, P_2, P_3 are all in front of the projection:

$$\langle X(\overline{\theta},\overline{\varphi}),P_i\rangle>0.$$

■ The origin is inside the projected triangle $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$:

$$\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_1, M(\overline{\theta},\overline{\varphi})P_2\rangle > 0,$$

 $\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_2, M(\overline{\theta},\overline{\varphi})P_3\rangle > 0,$
 $\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_3, M(\overline{\theta},\overline{\varphi})P_1\rangle > 0.$

■ The projected points $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$ are not to close to the origin:

$$||M(\overline{\theta}, \overline{\varphi})P_i|| > r.$$

 \blacksquare P_1, P_2, P_3 are all in front of the projection:

$$\langle X(\overline{\theta}, \overline{\varphi}), P_i \rangle > 0.$$

■ The origin is inside the projected triangle $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$:

$$\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_1, M(\overline{\theta},\overline{\varphi})P_2\rangle > 0,$$

 $\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_2, M(\overline{\theta},\overline{\varphi})P_3\rangle > 0,$
 $\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_3, M(\overline{\theta},\overline{\varphi})P_1\rangle > 0.$

■ The projected points $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$ are not to close to the origin:

$$||M(\overline{\theta},\overline{\varphi})P_i|| > r.$$

■ The points P_1 , P_2 , P_3 are locally maximally distant.

 \blacksquare P_1, P_2, P_3 are all in front of the projection:

$$\langle X(\overline{\theta}, \overline{\varphi}), P_i \rangle > \sqrt{2\varepsilon}.$$

■ The origin is inside the projected triangle $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$:

$$\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_1, M(\overline{\theta},\overline{\varphi})P_2 \rangle > \sqrt{2\varepsilon(\sqrt{2}+\varepsilon)},$$

$$\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_2, M(\overline{\theta},\overline{\varphi})P_3 \rangle > \sqrt{2\varepsilon(\sqrt{2}+\varepsilon)},$$

$$\langle R(\pi/2)M(\overline{\theta},\overline{\varphi})P_3, M(\overline{\theta},\overline{\varphi})P_1 \rangle > \sqrt{2\varepsilon(\sqrt{2}+\varepsilon)}.$$

■ The projected points $M(\overline{\theta}, \overline{\varphi}) \cdot \{P_1, P_2, P_3\}$ are not to close to the origin:

$$||M(\overline{\theta}, \overline{\varphi})P_i|| > r + \sqrt{2\varepsilon}.$$

■ The points P_1, P_2, P_3 are $\sqrt{5}\varepsilon$ -locally maximally distant.

ε -spanning points

Definition

Three points P_1, P_2, P_3 with $||P_1||, ||P_2||, ||P_3|| \le 1$ are called ε -spanning for (θ, φ) if:

$$\langle R(\pi/2)M(\theta,\varphi)P_1, M(\theta,\varphi)P_2 \rangle > \sqrt{2}\varepsilon(\sqrt{2}+\varepsilon).$$

 $\langle R(\pi/2)M(\theta,\varphi)P_2, M(\theta,\varphi)P_3 \rangle > \sqrt{2}\varepsilon(\sqrt{2}+\varepsilon).$
 $\langle R(\pi/2)M(\theta,\varphi)P_3, M(\theta,\varphi)P_1 \rangle > \sqrt{2}\varepsilon(\sqrt{2}+\varepsilon).$

ε -spanning points

Definition

Three points P_1, P_2, P_3 with $||P_1||, ||P_2||, ||P_3|| \le 1$ are called ε -spanning for (θ, φ) if:

$$\langle R(\pi/2)M(\theta,\varphi)P_1, M(\theta,\varphi)P_2 \rangle > \sqrt{2}\varepsilon(\sqrt{2}+\varepsilon).$$

$$\langle R(\pi/2)M(\theta,\varphi)P_2, M(\theta,\varphi)P_3 \rangle > \sqrt{2}\varepsilon(\sqrt{2}+\varepsilon).$$

$$\langle R(\pi/2)M(\theta,\varphi)P_3, M(\theta,\varphi)P_1 \rangle > \sqrt{2}\varepsilon(\sqrt{2}+\varepsilon).$$

Lemma

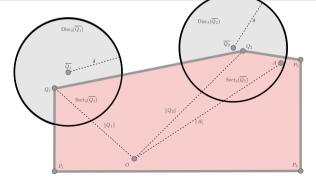
Let P_1, P_2, P_3 with $||P_1||, ||P_2||, ||P_3|| \le 1$ be ε -spanning for $(\overline{\theta}, \overline{\varphi})$ and let $\theta, \varphi \in \mathbb{R}$ such that $|\theta - \overline{\theta}|, |\varphi - \overline{\varphi}| \le \varepsilon$. Assume that $\langle X(\theta, \varphi), P_i \rangle > 0$ for i = 1, 2, 3. Then

$$X(\theta,\varphi) \in \operatorname{span}^+(P_1,P_2,P_3).$$

Locally maximally distant points

Definition

Let $\mathcal{P} \subset \mathbb{R}^2$ be a convex polygon and $Q \in \mathcal{P}$. Assume that for some $\overline{Q} \in \mathbb{R}^2$ it holds that $Q \in \operatorname{Disc}_{\delta}(\overline{Q})$, i.e. $\|Q - \overline{Q}\| < \delta$. Define $\operatorname{Sect}_{\delta}(\overline{Q}) := \operatorname{Disc}_{\delta}(\overline{Q}) \cap \mathcal{P}^{\circ}$. Moreover, $Q \in \mathcal{P}$ is called δ -locally maximally distant with respect to \overline{Q} (δ -LMD(\overline{Q})) if for all $A \in \operatorname{Sect}_{\delta}(\overline{Q})$ it holds that $\|Q\| > \|A\|$.



Sufficient condition of LMD

Lemma

Let \mathcal{P} be a convex polygon and $Q \in \mathcal{P}$. Let $\overline{Q} \in \mathbb{R}^2$ with $\|Q - \overline{Q}\| < \delta$ for some $\delta > 0$. Assume that for some r > 0 such that ||Q|| > r it holds that

$$\frac{\langle Q, Q - P_j \rangle}{\|Q\| \|Q - P_j\|} \ge \frac{\delta}{r},$$

for all vertices $P_i \in \mathcal{P} \setminus Q$. Then $Q \in \mathcal{P}$ is δ -LMD(\overline{Q}).

Sufficient condition of LMD

Lemma

Let \mathcal{P} be a convex polygon and $Q \in \mathcal{P}$. Let $\overline{Q} \in \mathbb{R}^2$ with $\|Q - \overline{Q}\| < \delta$ for some $\delta > 0$. Assume that for some r > 0 such that $\|Q\| > r$ it holds that

$$\frac{\langle Q, Q - P_j \rangle}{\|Q\| \|Q - P_j\|} \ge \frac{\delta}{r},$$

for all vertices $P_j \in \mathcal{P} \setminus Q$. Then $Q \in \mathcal{P}$ is δ -LMD(\overline{Q}).

Proof sketch.

Assume $A \in \operatorname{Sect}_{\delta}(\overline{Q}) = \operatorname{Disc}_{\delta}(\overline{Q}) \cap \mathcal{P}^{\circ}$, use $\cos(\angle(O, Q, P_{j})) = \frac{\langle Q, Q - P_{j} \rangle}{\|Q\| \|Q - P_{j}\|} \geq \frac{\delta}{r}$ to conclude that $\cos(\angle(O, Q, A)) \geq \delta/r$. Therefore,

$$||A||^2 - ||Q||^2 = ||Q - A|| \cdot (||Q - A|| - 2||Q|| \cos(\angle(O, Q, A))) < 0.$$

Local Theorem

Theorem (Local Theorem v0.1)

Let **P** be a convex, pointsymmetric polyhedron with radius 1 and $P_1, P_2, P_3 \in \mathbf{P}$. Set $\overline{X} := X(\overline{\theta}, \overline{\varphi}), \ \overline{M} := M(\overline{\theta}, \overline{\varphi})$. Assume that

$$\langle \overline{X}, P_i \rangle > \sqrt{2}\varepsilon$$
 (A_{\varepsilon})

for all i=1,2,3. Moreover, assume that P_1,P_2,P_3 are ε -spanning for $(\overline{\theta},\overline{\varphi})$. Finally, assume that for all i=1,2,3 and any $P_i \in \mathbf{P} \setminus P_i$ it holds that

$$\frac{\langle \overline{M}P_i, \overline{M}(P_i - P_j) \rangle - 2\varepsilon \|P_i - P_j\| \cdot (\sqrt{2} + \varepsilon)}{(\|\overline{M}P_i\| + \sqrt{2}\varepsilon) \cdot (\|\overline{M}(P_i - P_j)\| + 2\sqrt{2}\varepsilon)} > \frac{\sqrt{5}\varepsilon}{r},$$
(B_{\varepsilon})

for some r > 0 such that $\min_{i=1,2,3} \|\overline{M}P_i\| > r + \sqrt{2}\varepsilon$. Then there exists no solution to Rupert's problem with $(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) \in [\overline{\theta} \pm \varepsilon, \overline{\varphi} \pm \varepsilon, \overline{\theta} \pm \varepsilon, \overline{\varphi} \pm \varepsilon, \pm \varepsilon]$.

Some more lemmas

Lemma (Pythagoras)

For any $P \in \mathbb{R}^3$ one has $\|M(\theta, \varphi)P\|^2 = \|P\|^2 - \langle X(\theta, \varphi), P \rangle^2$.

Lemma (Trinity)

Let $V_1, V_2, V_3, Y, Z \in \mathbb{R}^3$ with ||Y|| = ||Z|| and $Y, Z \in \operatorname{span}^+(V_1, V_2, V_3)$. Then at least one of the following inequalities does not hold:

$$\langle V_1, Y \rangle > \langle V_1, Z \rangle,$$

$$\langle V_2, Y \rangle > \langle V_2, Z \rangle$$
,

$$\langle V_3, Y \rangle > \langle V_3, Z \rangle.$$

Proof sketch.

$$M_1 = M(\theta_1, \varphi_1), M_2 = M(\theta_2, \varphi_2), X_1 = X(\theta_1, \varphi_1), X_2 = X(\theta_2, \varphi_2).$$

Proof sketch.

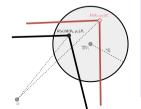
$$M_1 = M(\theta_1, \varphi_1), M_2 = M(\theta_2, \varphi_2), X_1 = X(\theta_1, \varphi_1), X_2 = X(\theta_2, \varphi_2).$$

$$(B_{\varepsilon}) \Rightarrow M_2 P_i \text{ is } \sqrt{5} \varepsilon\text{-LMD wrt. } \overline{M} P_i.$$

Proof sketch.

$$M_1 = M(\theta_1, \varphi_1), M_2 = M(\theta_2, \varphi_2), X_1 = X(\theta_1, \varphi_1), X_2 = X(\theta_2, \varphi_2).$$

- 2 $(B_{\varepsilon}) \Rightarrow M_2 P_i$ is $\sqrt{5}\varepsilon$ -LMD wrt. $\overline{M}P_i$.
- **3** Rupert's property $+\sqrt{5}\varepsilon$ -LMD $\Rightarrow ||M_2P_i|| > ||M_1P_i||$ for i = 1, 2, 3.

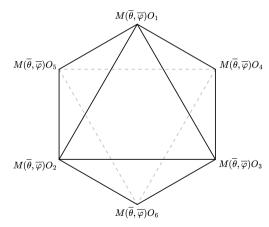


Proof sketch.

$$M_1 = M(\theta_1, \varphi_1), M_2 = M(\theta_2, \varphi_2), X_1 = X(\theta_1, \varphi_1), X_2 = X(\theta_2, \varphi_2).$$

- 2 (B_{\varepsilon}) $\Rightarrow M_2 P_i$ is $\sqrt{5}\varepsilon$ -LMD wrt. $\overline{M}P_i$.
- **3** Rupert's property $+\sqrt{5}\varepsilon$ -LMD $\Rightarrow \|M_2P_i\| > \|M_1P_i\|$ for i = 1, 2, 3.
- **5** (3), (4) and (Pythagoras) $\Rightarrow \langle X_1, P_i \rangle > \langle X_2, P_i \rangle$
- **6** P_1, P_2, P_3 are ε -spanning (+ Lemma) $\Rightarrow X_1, X_2 \in \operatorname{span}^+(P_1, P_2, P_3)$
- (5)+(6) + Trinity lemma \Rightarrow contradiction.

Example continued



Theorem (Local Theorem v1.0)

Let \mathbf{P} be a polyhedron with radius 1 and $P_1, P_2, P_3, Q_1, Q_2, Q_3 \in \mathbf{P}$. Assume that P_1, P_2, P_3 and Q_1, Q_2, Q_3 are congruent. Let $\varepsilon > 0$ and $\overline{\theta}_1, \overline{\varphi}_1, \overline{\theta}_2, \overline{\varphi}_2, \overline{\alpha} \in \mathbb{R}$, then set $\overline{X_1} := X(\overline{\theta}_1, \overline{\varphi}_1), \overline{X_2} := X(\overline{\theta}_2, \overline{\varphi}_2)$ as well as $\overline{M_1} := M(\overline{\theta}_1, \overline{\varphi}_1), \overline{M_2} := M(\overline{\theta}_2, \overline{\varphi}_2)$. Assume that there exist $\sigma_P, \sigma_Q \in \{0, 1\}$ such that

$$(-1)^{\sigma_P}\langle \overline{X_1}, P_i \rangle > \sqrt{2}\varepsilon \quad \text{and} \quad (-1)^{\sigma_Q}\langle \overline{X_2}, Q_i \rangle > \sqrt{2}\varepsilon, \tag{A}_{\varepsilon}$$

for all i=1,2,3. Moreover, assume that P_1,P_2,P_3 are ε -spanning for $(\theta_1,\overline{\varphi}_1)$ and that Q_1,Q_2,Q_3 are ε -spanning for $(\overline{\theta}_2,\overline{\varphi}_2)$. Finally, assume that for all i=1,2,3 and any $Q_i\in \mathbf{P}\setminus Q_i$ it holds that

$$\frac{\langle \overline{M_2}Q_i, \overline{M_2}(Q_i - Q_j) \rangle - 2\varepsilon \|Q_i - Q_j\| \cdot (\sqrt{2} + \varepsilon)}{\left(\|\overline{M_2}Q_i\| + \sqrt{2}\varepsilon \right) \cdot \left(\|\overline{M_2}(Q_i - Q_j)\| + 2\sqrt{2}\varepsilon \right)} > \frac{\sqrt{5}\varepsilon + \delta}{r},$$

$$(\mathsf{B}_\varepsilon)$$

for some r>0 such that $\min_{i=1,2,3}\|\overline{M_2}Q_i\|>r+\sqrt{2}\varepsilon$ and for some $\delta\in\mathbb{R}$ with

$$\delta \geq \max_{i=1,2,3} \left\| R(\overline{\alpha}) \overline{M_1} P_i - \overline{M_2} Q_i \right\| / 2.$$

Then there exists no solution to Rupert's problem $R(\alpha)M(\theta_1, \varphi_1)\mathbf{P} \subset M(\theta_2, \varphi_2)\mathbf{P}^{\circ}$ with $(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) \in [\overline{\theta}_1 \pm \varepsilon, \overline{\varphi}_1 \pm \varepsilon, \overline{\theta}_2 \pm \varepsilon, \overline{\varphi}_2 \pm \varepsilon, \overline{\alpha} \pm \varepsilon] \subseteq \mathbb{R}^5$.

Motivation for rational approximation

SageMath version 10.0, Release Date: 2023-05-20 Using Python 3.11.1. Type "help()" for help.

```
sage: 1 + 10^(-16) > 1
True
sage: ■
```

Motivation for rational approximation

```
SageMath version 10.0, Release Date: 2023-05-20 Using Python 3.11.1. Type "help()" for help.
```

```
sage: 1 + 10^(-16) > 1
True
sage: ■
```

imprecise but fast

exact but slow

Idea of rational approximation $\kappa \coloneqq 10^{-10}$

$$sin_{\mathbb{Q}}(x) := x - \frac{x^3}{3} \mp + \frac{x^5}{5!} \cdots + \frac{x^{25}}{25!},$$

$$cos_{\mathbb{Q}}(x) := 1 - \frac{x^2}{2} \mp + \frac{x^4}{4!} \cdots + \frac{x^{24}}{24!}.$$

By replacing \sin , \cos with $\sin_{\mathbb{Q}}$, $\cos_{\mathbb{Q}}$ define the functions

$$R_{\mathbb{Q}}(\alpha), R'_{\mathbb{Q}}(\alpha), X_{\mathbb{Q}}(\theta, \varphi), M_{\mathbb{Q}}(\theta, \varphi), M^{\theta}_{\mathbb{Q}}(\theta, \varphi), M^{\varphi}_{\mathbb{Q}}(\theta, \varphi).$$

Idea of rational approximation $\kappa \coloneqq 10^{-10}$

$$sin_{\mathbb{Q}}(x) := x - \frac{x^3}{3} \mp + \frac{x^5}{5!} \cdots + \frac{x^{25}}{25!},$$

$$cos_{\mathbb{Q}}(x) := 1 - \frac{x^2}{2} \mp + \frac{x^4}{4!} \cdots + \frac{x^{24}}{24!}.$$

By replacing \sin , \cos with $\sin_{\mathbb{Q}}$, $\cos_{\mathbb{Q}}$ define the functions

$$R_{\mathbb{Q}}(\alpha), R'_{\mathbb{Q}}(\alpha), X_{\mathbb{Q}}(\theta, \varphi), M_{\mathbb{Q}}(\theta, \varphi), M^{\theta}_{\mathbb{Q}}(\theta, \varphi), M^{\varphi}_{\mathbb{Q}}(\theta, \varphi).$$

Lemma

Let $\alpha, \theta, \varphi \in [-4, 4]$. Then it holds that

$$\|R(\alpha) - R_{\mathbb{Q}}(\alpha)\|, \|R'(\alpha) - R'_{\mathbb{Q}}(\alpha)\|, \|X(\theta, \varphi) - X_{\mathbb{Q}}(\theta, \varphi)\|, \|M(\theta, \varphi) - M_{\mathbb{Q}}(\theta, \varphi)\| \leq \kappa.$$

Moreover,

$$||R_{\mathbb{O}}(\alpha)||, ||R'_{\mathbb{O}}(\alpha)||, ||X_{\mathbb{O}}(\theta, \varphi)||, ||M_{\mathbb{O}}(\theta, \varphi)|| \le 1 + \kappa.$$

Rational global theorem

Theorem (Rational Global Theorem)

Let \mathbf{P} be a pointsymmetric convex polyhedron with radius $\rho=1$ and $\widetilde{\mathbf{P}}$ a κ -rational approximation. Let $\widetilde{S} \in \widetilde{\mathbf{P}}$. Further let $\varepsilon>0$ and $\overline{\theta}_1,\overline{\varphi}_1,\overline{\theta}_2,\overline{\varphi}_2,\overline{\alpha} \in \mathbb{Q} \cap [-4,4]$. Let $w \in \mathbb{Q}^2$ be a unit vector. Denote $\overline{M_1} := M_{\mathbb{Q}}(\overline{\theta}_1,\overline{\varphi}_1)$, $\overline{M_2} := M_{\mathbb{Q}}(\overline{\theta}_2,\overline{\varphi}_2)$ as well as $\overline{M_1}^{\theta} := M_{\mathbb{Q}}^{\theta}(\overline{\theta}_1,\overline{\varphi}_1)$, $\overline{M_1}^{\varphi} := M_{\mathbb{Q}}^{\varphi}(\overline{\theta}_1,\overline{\varphi}_1)$ and analogously for $\overline{M_2}^{\theta}$, $\overline{M_2}^{\varphi}$. Finally set

$$\begin{split} G^{\mathbb{Q}} &:= \langle R_{\mathbb{Q}}(\overline{\alpha}) \overline{M_{1}} \widetilde{S}, w \rangle - \varepsilon \cdot \left(|\langle R_{\mathbb{Q}}'(\overline{\alpha}) \overline{M_{1}} \widetilde{S}, w \rangle| + |\langle R_{\mathbb{Q}}(\overline{\alpha}) \overline{M_{1}}^{\theta} \widetilde{S}, w \rangle| + |\langle R_{\mathbb{Q}}(\overline{\alpha}) \overline{M_{1}}^{\varphi} \widetilde{S}, w \rangle| \right) \\ &- 9\varepsilon^{2}/2 - 4\kappa (1 + 3\varepsilon), \end{split}$$

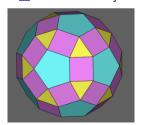
$$H_P^{\mathbb{Q}} := \langle \overline{M_2}P, w \rangle + \varepsilon \cdot (|\langle \overline{M_2}^{\theta}P, w \rangle| + |\langle \overline{M_2}^{\varphi}P, w \rangle|) + 2\varepsilon^2 + 3\kappa(1 + 2\varepsilon).$$

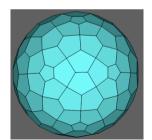
If $G^{\mathbb{Q}} > \max_{P \in \widetilde{\mathbf{P}}} H_P^{\mathbb{Q}}$ then there does not exist a solution to Rupert's condition with

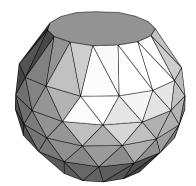
$$(\theta_1, \varphi_1, \theta_2, \varphi_2, \alpha) \in [\overline{\theta}_1 \pm \varepsilon, \overline{\varphi}_1 \pm \varepsilon, \overline{\theta}_2 \pm \varepsilon, \overline{\varphi}_2 \pm \varepsilon, \overline{\alpha} \pm \varepsilon].$$

Wishlist for a solid

- Not Rupert
- many symmetries
- no mirrorsymmetry because of (A_{ε}) and (B_{ε})
- local theorem always applicable
- pointsymmetry
- not too many vertices







Definition of the Noperthedron

$$\mathcal{C}_{30} := \left\{ (-1)^{\ell} R_z \left(rac{2\pi k}{15}
ight) : k = 0, \dots, 14; \ell = 0, 1
ight\}.$$

$$C_1 \coloneqq \frac{1}{259375205} \begin{pmatrix} 152024884 \\ 0 \\ 210152163 \end{pmatrix}, \quad C_2 \coloneqq \frac{1}{10^{10}} \begin{pmatrix} 6632738028 \\ 6106948881 \\ 3980949609 \end{pmatrix}, \quad C_3 \coloneqq \frac{1}{10^{10}} \begin{pmatrix} 8193990033 \\ 5298215096 \\ 1230614493 \end{pmatrix}.$$

Note: $||C_1|| = 1$ and $\frac{98}{100} < ||C_i|| < \frac{99}{100}$ for i = 2, 3.

Definition

Define the set of points **NOP** $\subseteq \mathbb{R}^3$ by the action of \mathcal{C}_{30} on $\mathcal{C}_1, \mathcal{C}_2, \mathcal{C}_3$:

$$NOP := C_{30} \cdot C_1 \cup C_{30} \cdot C_2 \cup C_{30} \cdot C_3.$$

The *Noperthedron*, **NOP** has 90 vertices. **NOP** is pointsymmetric since $-\operatorname{Id} \in \mathcal{C}_{30}$. Symmetries, e.g.: $M(\theta + 2\pi/15, \varphi) \cdot \text{NOP} = M(\theta, \varphi) \cdot \text{NOP} \Rightarrow \theta_1, \theta_2 \in [0, 2\pi/15)$.

Certificate of computer proof

ID	T	#C	ID1C	sp	$\overline{\theta}_{1,\min}$	$\overline{\theta}_{1,\text{max}}$	$\overline{\varphi}_{1,\min}$	$\overline{\varphi}_{1,\max}$	$\overline{\theta}_{2, \min}$	$\overline{\theta}_{2, \max}$	$\overline{\varphi}_{2,\min}$	$\overline{\varphi}_{2,\max}$	$\overline{\alpha}_{\min}$	$\overline{\alpha}_{\max}$	P_1	P_2	P_3	Q_1	Q_2	Q_3	r	σ_Q	w_x	w_y	w_d	S
0	3	4	1	1	0	6400	0	4800	0	6400	0	2400	-2400	2400												
1	3	30	5	2	0	1600	0	4800	0	6400	0	2400	-2400	2400												
2	3	30	4667	2	1600	3200	0	4800	0	6400	0	2400	-2400	2400												
3	3	30	9477	2	3200	4800	0	4800	0	6400	0	2400	-2400	2400												
4	3	30	1451	2	4800	6400	0	4800	0	6400	0	2400	-2400	2400												
5 6 7	3	4	35	3	0	1600	0	1600	0	6400	0	2400	-2400	2400												
6	3	4	7031	3	0	1600	1600	3200	0	6400	0	2400	-2400	2400												
7	3	4	1067	3	0	1600	3200	4800	0	6400	0	2400	-2400	2400												
1	1	- :	:	:	:	:	:	:	:	:	:	:	:	:			:	:	- :	- :	:	1	:	1	:	:
	-	-	-	<u> </u>		-	-	-	-		-	-	-		-	-	<u> </u>	_	-	-	_	<u> </u>	-	-	-	<u> </u>
29	1		;	;		:	;		:					:		1					1	;			;	:
91	1				0	8000	0	8000	8000	1600	8060	1620	-2340	-2280									5373	1564	1645	39
91 92	1				0	8000	8000	1600	0	8000	0	8060	-2400	-2340									9892	3515	1033	37
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
245	2	-	-	<u> </u>	. 0	2000	0	2000	0	2000	0	2040	-2220	-2280	30	31	38	79	80	87	-69	i	-	-		<u> </u>
245 246	1			_	0	2000	0	2000	0	2000	2040	4080	-2360	-2220	- 00	O.	- 00	-10	- 00	01	-00		7105	1988	2037	39
247	1				0	2000	0	2000	0	2000	2040	4080	-2220	-2280									7105	1988	2037	39
248	2				0	2000	0	2000	2000	4000	0	2040	-2360	-2220	30	31	38	79	80	87	-69	1	121100	201100	Bonor	
249	2				0	2000	0	2000	2000	4000	0	2040	-2220	-2280	30	31	38	79	80	87	-69	1				
	_				-	20000		2000	20000			200.00										-				
	1																;	1			;					
1844	1	<u> </u>	<u> </u>	÷	4800	6400	4600	4800	4800	6400	2280	2400	2280	2400	Ė	_	Ė		<u> </u>		i i	Ė	3340	-1451	1449	78

Computer proof statistics

- \sim 18.000.000 global theorem applications
- \sim 600.000 local theorem applications
- ullet pprox 3Gb uncompressed certificate (pprox 150Mb compressed)
- ightharpoonup pprox 10h for creation of table (using floating points in R)
- lacksquare pprox 30h for verification in SageMath

Conclusion and open question

- What about the remaining 3 Archimedean solids? In particular the Rhombicosidodecahedron?
- Are there other ways to disprove the existence of local solutions?
- Is there a way to prove that a solid does not have Rupert's property without a huge case distinction?
- How to prove the conjectured Nieuwland numbers? $3\sqrt{2}/4$ for the Octahedron is open, also that the Dodecahedron and Icosahedron have $\nu\approx 1.0108$, a root of

$$P(x) = 2025x^8 - 11970x^6 + 17009x^4 - 9000x^2 + 2000.$$

■ What is the link to duality?

