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Prince Rupert's cube
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Prince Rupert's cube

Fact (Wallis, 1685)

It is possible to cut a hole inside the unit cube such that another unit cube can pass
through this hole.

m How to understand this paradox? How to find the solution?
m Which other solids have this property? Is there a characterization?
m What is the “optimal” way to put a cube inside a cube? What about other solids?
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Rupert's problem

m A convex polyhedron P is called Rupert if a hole with the shape of a straight
tunnel can be cut into it such that a copy of P can be moved through this hole.

m Rupert’s problem is the task to decide whether a given polyhedron is Rupert.

N
<
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Nieuwland’'s number

Fact (Nieuwland, 1816)

It is possible to cut a hole inside the unit cube such that a cube with side length
less than 3/2/4 ~ 1.0606 can pass through this hole.
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Nieuwland’'s number

Fact (Nieuwland, 1816)

It is possible to cut a hole inside the unit cube such that a cube with side length
less than 3/2/4 ~ 1.0606 can pass through this hole.

m The largest number v € R such that vP passes through some hole inside P is
called Nieuwland number of P.

m For all solids it holds that v > 1.
m P is Rupert < v(P) > 1.
m v of the Cube is exactly 3v/2/4 [Nieuwland, 1816].
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Brief history of Rupert’'s problem

m The Cube is Rupert [conjectured by Prince Rupert, proved by Wallis 1685].
m The Nieuwland number of the Cube is 3v/2/4 [Nieuwland, 1816].
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Brief history of Rupert’'s problem

m The Cube is Rupert [conjectured by Prince Rupert, proved by Wallis 1685].

m The Nieuwland number of the Cube is 3v/2/4 [Nieuwland, 1816].

m The Tetrahedron and Octahedron are Rupert [Scriba, 1968].

m The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on
Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].

m 8 out of 13 Archimedean solids are Rupert [Chai, Yuan, Zamfirescu, 2018].

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

All convex polyhedra have Rupert’s property.

m 9 of 13 Archimedean solids are Rupert [Hoffmann, 2018] [Lavau, 2019].

m 10 of 13 Archimedean solids and many other polyhedra are Rupert. Efficient way
for proving Rupert's property. Theoretical algorithm for deciding. [S., Y., 2021].

m 11 of 13 Catalan solids are Rupert, improved optimization [Fredriksson, 2022].

m The Noperthedron: a counter example to the conjecture [S., Y., 2025].
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Solids

truncated tetrahedron  cuboctahedron  truncated cube  truncated octahedron

rhombicuboctahedron truncated cuboctahedron snub cube

icosidodecahedron truncated dodecahedron truncated icosahedron

rhombicosidodecahedron  truncated icosidodecahedron  snub dodecahedron

20 ¥
2
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Definition of Rupert’s problem

7/38



Proving Rupert's property
©0000

Definition of Rupert’s problem

Let M(0, ) : R — R2 be an orthogonal projection map in direction X(0, ) € R® and
R(a) : R? — R? be the rotation map.

Z /\ X(0,¢) = (cosfsin p,sinfsin, cos )t

;\ M2 = (_ ooy o) 0

—cos(f) cos(p) —sin(0) cos(p) sin(yp),

»éy L Ry = <C°S(°‘) Si”(a)>.

sin(a)  cos()

Definition

A point-symmetric polyhedron P has Rupert’s property, if there exist 5 parameters
a, 61,602 € [0,27) and ¢1, p2 € [0, 7] such that

R(a) o M(&l, (,01)P C (M(az, g02)P)o.
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A basic (Las Vegas) algorithm

Input: A centrally symmetric polyhedron P.

Output: The solution encoded by W = (a, 61, 02, 1, 02) € R® if P is Rupert.

(
(

1)
2)

—~~
w
~—~

—~~
D
~

—~~
o1
~—

Draw 61, 6> and « uniformly in [0,27), and @1, @2 uniformly in [0, 7].
Construct the two 3 x 2 matrices A and B corresponding to the linear maps
R(a) o M(61, 1) and M(62,2). Compute the two projections of P given by
P'=A-Pand Q =B -P.

Find vertices on the convex hulls of P’ and Q’; denote them by P and Q.
Decide whether P lies inside of Q by checking each vertex of P.

If Step (4) yields a True, return the solution W = («, 01,602, 1, p2). Otherwise,
repeat Steps (1)-(5).
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The Truncated lcosidodecahedron

Theorem (S., Y., 2021)

The Truncated Icosidodecahedron has Rupert’s property.
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The Truncated lcosidodecahedron

Theorem (S., Y., 2021)

The Truncated Icosidodecahedron has Rupert’s property.

Proof.
o = 0.43584, 01 = 2.77685, 6, = 0.790601, o1 = 2.09416, p, = 2.89674,
plus some verification of linear inequalities in Maple/SageMath. L
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Platonic, Archimedean, Catalan and Johnson Solids

Theorem (S., Y., 2021)

In a few minutes it can be proven automatically that:
All' 5 Platonic solids are Rupert.
At least 10 out of 13 Archimedean solids are Rupert.
At least 9 out of 13 Catalan solids are Rupert.
At least 82 out of 92 Johnson solids are Rupert.
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Are all convex polyhedra Rupert?

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

All convex polyhedra have Rupert’s property.

m All Platonic solids are Rupert.

m 3 Archimedean solids remain open. One of them is point-symmetric.
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Are all convex polyhedra Rupert?

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

All convex polyhedra have Rupert’s property.

m All Platonic solids are Rupert.
3 Archimedean solids remain open. One of them is point-symmetric.
Rhombicosidodecahedron natural candidate for disproving conjecture.

H
H
m Rupertness: Probability that a random projection yields a solution.
m Can estimate confidence intervals for Rupertness.

H

Conclusion: RID is significantly different from other regular solids.
It is likely that RID is a counter example to the conjecture.
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4 years later: The Noperthedron is not Rupert

Theorem (S., Y., 2025)
The Noperthedron, NOP, does not have Rupert’s property.
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A non-Rupert polyhedron
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|dea of proof

m Partition the five-dimensional solution space
I =1[0,2m) x [0, 7] x [0,27) x [0, 7] X [—m,7)

into small parts and prove for each that no solution in that region exists.

m Rough idea: Show that the “middle point” of any region does not yield a solution
and argue with effective continuity of the parameters that this also excludes an
explicit neighborhood around that point.
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|dea of proof

m Partition the five-dimensional solution space
I =1[0,2m) x [0, 7] x [0,27) x [0, 7] X [—m,7)

into small parts and prove for each that no solution in that region exists.

m Rough idea: Show that the “middle point” of any region does not yield a solution
and argue with effective continuity of the parameters that this also excludes an
explicit neighborhood around that point.

m The global theorem is tailored for two generic projections of P, when some
vertex of the “smaller” projection P = R(a)M(61,p1) P is strictly outside the
“larger” projection Q = M(60;, p2) P.

m The local theorem can handle projections that look (almost) exactly the same,
for instance if 01 =~ 62, p1 =~ @2 and a = 0.
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Global theorem

Motivation for global theorem
M(6:,5,)0,
M(0:,%,)05 M(6:,%,)04
M(6:,%,)03
M(82,5,)0, M(02,%,)03
M(02,5,)Qg

(01, 01,02, p2,a) = (0,0, 7/4, tan_l(\/i), 0)

14/38



Global theorem
0®00000

Starting point of the global theorem

Recall:
z

X(0, ) = (cosBsin p,sinfsin @, cos ),

| o —sin(0) cos() 0
‘k M(0, ¢) = (— cos(f) cos(yp) —sin(6) cos(yp) sin(gp),) ’
a ! _ (cos(a) —sin(a)
»“/ Rla) = (sin(a) cos(a) >
Lemma
Lete >0 and |6 — 0|, |p — P|, |a — @| < € then
m [M(8,¢) — M(8,9)|| < V2e,

= [1X(8, ) = X0 < V2,
= [|R(a)M(8, ) — R@)M(0,7)|| < v/5e.
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1 0 0 cosa 0 —sina cosa —sina 0
Ry(a) = (0 cosae —sina| ,R(a):=( 0 1 0 ,R(a) == [ sina cosa 0],

0 sina cosa sinae 0 cosa 0 0 1

X(97 So)t = (O 0 1) : Ry(@) : Rz(_e)v M(H,(p) = (_01 é 0 : R}’(QO) : Rz(_‘g)

For any a, 3 € R one has ||Re(a)Ry,(8) — Id || < v/a? + 2.
Sketch of proof: Write Ry(a)R,(3) = UR,(®)U~! and take trace to obtain:
cos(a) 4 cos(3) + cos(a) cos() = 1 + 2 cos(®P).
Jensen on f(t) = cos(y/t) shows LHS > 1+ 2cos(y/a? + (32), thus |®]| < y/a? + 52.
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First version of the global theorem

Recall the definition of Rupert's property
R(a)M(01, 1) P C (M(62,¢2) P)°.
If W € R® is a solution, then for any vector w € R? it holds that
(R(a)M(61, 1)S, w) < max(M(62, p2)P, w).

Theorem (Global theorem v0.1)

Let P be convex, pointsymmetric with radius 1. Assume:

(R(@)M(61,%1)S, w) > fpg;(M(@z,%)P, w) + (V2 + VB)e

for some S € P and w € R? with ||w|| = 1, then there cannot be a solution
(917801"927302’04) = [01 :|:€,¢1 + 6792 + €, P :|:67a:|:€].

17/38
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m Consider the Octahedron O = {(=1,0,0), (0,41,0),(0,0,+1)} € R3 and two
projection directions (01, %;) = (0,0) and (02, B,) = (7/4,tan"1(v/2)). Set
a=0.

m Goal: show this is no solution to Rupert's problem and there exists € > 0 such
that there is also no solution (01, ¢1, 02, 2, ) with |0; — 0;], [7; — @i, || < e.

M (62,0,

M(0,5,)05 M(02,52)04

M(81,7,)0s

M(0,5,)0, M(0,5,)03

M(02,22)Qg
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Example continued

Following the global theorem we first compute:

- _v (0 10 = . (=V2/2 V2/2 0
M(gl’@l)_<—1 0 0> and M(az’%)_(—\@m —6/6 \/6/3)

We choose S = O3 = (0,1,0) and w = (1,0), thus (R(@)M(61,%;)S,w) = 1.

0 for P = M(02,%,)0; with i=1,6,
(M(02,5,)P,w) = ¢ 1/2/2 for P = M(02,%,)0; with i= 3,4,
—/2/2 for P = M(02,%,)0; with i =2,5.

‘ M(6:,%

M(02,,)02 M(02,%,)05
M(62,5,)Q 19/38
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Example continued

Following the global theorem we first compute:

- _v (0 10 = . (=V2/2 V2/2 0
M(gl’@l)_<—1 0 0> and M(az’%)_(—\@m —6/6 \/6/3)

We choose S = O3 = (0,1,0) and w = (1,0), thus (R(@)M(61,%;)S,w) = 1.

0 for P = M(02,%,)0; with i=1,6,
(M(02,5,)P,w) = ¢ 1/2/2 for P = M(02,%,)0; with i= 3,4,
—/2/2 for P = M(02,%,)0; with i =2,5.
Thus if € > 0 is chosen so that G0,
1> V2/2+(V2+V5)e, e.g. c=0.08

M(6:,%

there is no solution in ‘

(07 07 7T/4'7 tanil(\/é)a 0) +e - RS. M@@)OZ\7M@,@)03
MO0 19/38
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Actual Global theorem

Theorem (Global Theorem v1.0)

Let P be a pointsymmetric convex po/_yhedron zvith radiu_s 1 and Let SeP. Let
w € R? be a unit vector and denote My := M(01,%,), My := M(02,%,) as well as

Vlo = M?(01,%,), Mi¥ .= M¥(61,%,) and analogously for VJ’,VZ@. Finally set

G = (R@MS, w) — e (|(R(@MS, w)| + [(R@M' S, w)| + [(R@M*S, w)])
—9¢2/2,
Hp = (MaP,w) + ¢ - (|(Mg" P, w)| + |(Ma* P, w)|) + 262, for P € P.

If G > maxpecp Hp then there does not exist a solution to Rupert’s condition with
(91590159279027a) € [51 :l:&‘,@]_ + 5752 + 55@2 ﬂ:&,aﬂ: 8] - RS-

€ = 0.08 from Example can be replaced by ¢ = 0.164 20/38
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Motivation for local theorem: 61 = 65, 1 = vy, a =0

M(6,%)0

M(6,%)0s M(6,%)04

M(6,)0, M(6,%)03

M(6,%)0¢

(01, 01,02, 02, a) = (7/4,tan"1(v/2), 7/4,tan"1(1/2),0)
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Motivation for local theorem: 61 = 65, 1 = vy, a =0

M(8,7)01
A= M(0, )0,
M(0,%)05 M(6,5)04 B = M(Q, 90)027
C:= M(e’ (10)03
Fact:
2 2 2 _
M(0,%)0, M(6,5)0;3 HAH +HBH +HCH =2
— no local solution
M(6,)0s from this direction

(01, 01,02, 02, ) = (7/4,tan"(+/2), /4, tan"1(1/2),0)
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Conditions for the three-point method

m Py, P», P3 are all in front of the projection:

(X(0,9), P;) > 0.
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Conditions for the three-point method

m Py, P», P3 are all in front of the projection:
<X(§7¢)a 'DI> > 0.

m The origin is inside the projected triangle M(f {P1, P2, P3}:

P)

< (7T/2) ( 780)P15 (g @)P2> >0,
< (7T/2) ( 7<10)P2a (g @)P3> >0,
(R(m/2)M(8,%)P3, M(0,%)P1) > 0.
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Conditions for the three-point method

m Py, P», P3 are all in front of the projection:
<X(§7¢)a 'DI> > 0.

m The origin is inside the projected triangle M(6, %) -
< (7T/2) ( ,QO)P]_,M(@,@)P2>>O,
< (7T/2) ( 7<10)P2a M(eaa)P3> > 07

0,9

m The projected points M(,%) - {P1, P>, P3} are not to close to the origin:
IM(0,2)Pil| > r.
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Conditions for the three-point method

m Py, P», P3 are all in front of the projection:
<X(§7¢)a 'DI> > 0.
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m The projected points M(,%) - {P1, P>, P3} are not to close to the origin:
IM(0,2)Pil| > r.

m The points Py, P>, P3 are locally maximally distant. 2%
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Conditions for the three-point method

m Py, P», P3 are all in front of the projection:

(X(0,%), Py > V2.

m The origin is inside the projected triangle M(f
(R(m/2)M(0,%) Py, M(,
(R(m/2)M(0, %) P2, M(0),
(R(m/2)M(0,%)P3, M(0),

;) - {P1, P2, P3}:
B)P2) > V2e(V2 +¢),
B)P3) > V2:(V2 +¢),
B)P1) > V2:(V2 +€).

m The projected points M(6,%) - {P1, P>, P3} are not to close to the origin:

IM(@. D)Pill > r+v/2e.

m The points Py, Py, P3 are /5¢-locally maximally distant. 2238
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g-spanning points

Definition

Three points P1, P2, P3 with ||Py|[, || P2]|, ||Ps|| < 1 are called e-spanning for (6, ¢) if:
(R(?T/2)M(¢9, SO)Pla M(97 QO)P2> > \/55(\/§+ 6)
(R(m/2)M(6,0) P2, M(6, ) Ps) > V2e(v/2 + ¢).
(R(/2)M(0,0)P3, M(0, 0)P1) > v/2e(v/2 + ¢).
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g-spanning points

Definition

Three points P1, P2, P3 with ||Py|[, || P2]|, ||Ps|| < 1 are called e-spanning for (6, ¢) if:
(R(m/2)M(8, @) P1, M(6, ) P2) > V2e(V2 + ¢).
(R(7/2)M(0, 0) P2, M(6, ) P3) > V2e(V2 +¢).
(R(m/2)M(0,0)P3, M(8, 0)P1) > v26(V2 + €).

Let Py1, Po, P3 with ||P1]|, || P2||, || P3]| < 1 be e-spanning for (6,%) and let 6, € R
such that |6 — 0|, |p — p| < e. Assume that (X(0,¢), P;) >0 for i =1,2,3. Then

X(0, ) € span™ (Py, P, P3).

23/38
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Locally maximally distant points

Definition

Let P C R? be a convex polygon and @ € P. Assume that for some @ € R? it holds
that Q € Discs(Q), i.e. ||Q — Q|| < §. Define Sects(Q) := Discs(Q) npe. -
Moreover, Q € P is called d-locally maximally distant with respect to Q (6-LMD(Q))

if for all A € Sects(Q) it holds that || Q]| > ||A]l.

l %3
L © 24/38
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Sufficient condition of LMD

Lemma

Let P be a convex polygon and @ € P. Let @ € R? with ||Q — Q| < & for some
d > 0. Assume that for some r > 0 such that ||Q|| > r it holds that

<C?7(? B FU)

> é,
lele =~ = 7

for all vertices P € P\Q. Then Q € P is 6-LMD(Q).
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Sufficient condition of LMD

Lemma

Let P be a convex polygon and @ € P. Let @ € R? with ||Q — Q| < & for some
d > 0. Assume that for some r > 0 such that ||Q|| > r it holds that

(Q.0-P) _ 3

QIR — Al = r’

for all vertices P € P\Q. Then Q € P is 6-LMD(Q).

Proof sketch
Assume A € Sects(Q) = Discs(Q) N P°, use cos(£(0, @, P;)) = % > to
conclude that cos(£(0, Q, A)) > §/r. Therefore,

1A = QI = 1Q — All - (IIQ — All - 2]| Q]| cos(£(0, Q, A))) < 0. -

25/38
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Local Theorem

Theorem (Local Theorem v0.1)

L_et P be_ a convex, pointsymmetric polyhedron with radius 1 and Py, P>, P3 € P. Set
X = X(0,9), M := M(0,p). Assume that

(X, P} > Ve (A.)

for all i = 1,2,3. Moreover, assume that Py, P, P3 are e-spanning for (9, ©). Finally,
assume that for all i = 1,2,3 and any P; € P\P; it holds that

<WP;,V(P,'—PJ')>—2€||P,'—Pj||-(\/§_|_€) \/55 (B)
(MR +v2) - (M(P, — Pl + 2v2) 7 5

for some r > 0 such that minj—1 >3 MP;|| > r+ V2e. The_n there exists no solution
to Rupert’s problem with (61, 1,02, p2,0) € [0 te,pLte,0+e,0te, £e].

26 /38
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Some more lemmas

Lemma (Pythagoras)
For any P € R3 one has |M(8,0)P||* = ||P|12 = (X(6, 0), P)2.

Lemma (Trinity)
Let Vi, Vo, V3,Y,Z € R3 with ||Y|| = ||Z|| and Y, Z € span™(V4, Vo, V3). Then at
least one of the following inequalities does not hold:

<V1, Y> > <V1,Z>,

<V2, Y> > <V2,Z>,

(V3,Y) > (V3,Z).
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Proof sketch of the Local Theorem

Proof sketch.

Assume (61, 01,02, 02,0) €[+, p+e,0+e,Bte,%e], let

My = M(01, 1), Mo = M(62, ¢2), X1 = X(01, 1), Xo = X(02, 2).
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Local theorem
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Proof sketch of the Local Theorem

Proof sketch.

Assume (61, 01,02, 02,0) €[+, p+e,0+e,Bte,%e], let
My = M(01, 1), Mo = M(02,¢2), X1 = X(01, 1), Xo = X(02, 02).

(B:) = MyP; is v/5e-LMD wrt. MP;.
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Local theorem
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Proof sketch of the Local Theorem

Proof sketch.

Assume (61, 01,02, 02,0) €[+, p+e,0+e,Bte,%e], let
My = M(01, 1), Mo = M(02,¢2), X1 = X(01, 1), Xo = X(02, 02).

(B:) = MyP; is v/5e-LMD wrt. MP;.
Rupert’s property 4 v/5e-LMD = |MyP;| > ||MyP;| for i = 1,2,3.
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Local theorem

Proof sketch of the Local Theorem

Proof sketch.

Assume (61, 01,02, 02,0) €[+, p+e,0+e,Bte,%e], let
My = M(01, 1), Mo = M(02,¢2), X1 = X(01, 1), Xo = X(02, 02).

(B:) = MyP; is v/5e-LMD wrt. MP;.
Rupert’s property 4 v/5e-LMD = |MyP;| > ||MyP;| for i = 1,2,3.

(AE) = <X1,P,‘>, <X2,P,'> > 0.
(3), (4) and (Pythagoras) = (X1, P;) > (Xa, P;)
@A P1, P>, P3 are e-spanning (+ Lemma)= Xi, X € span™ (P, P2, P3)

(5)+(6) + Trinity lemma = contradiction.
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Example continued

M(0,%)0,

M(§7¢)O5 M(§7¢)O4

M(8,%)0, M(8,9)03
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Theorem (Local Theorem v1.0)

Let P be a polyhedron with radius 1 and Py, P, Ps, Q1, Q2, Q3 € P. Assume that P1, P>, P; and
Q1, @, Qs are congruent. Lete > 0 and 01,;,02,9,, @ € R, then set X1 := X(01,%,), X2 = X(02,%,)
as well as My := M(01,%,), M2 .= M(02,%,). Assume that there exist op,0q € {0,1} such that

(—1)7P (X1, P;) > V2¢ and (—1)7°(X, Q) > V2, (A2)

for all i = 1,2,3. Moreover, assume that P, P, Ps are e-spanning for (01,%,) and that Qi, Q», Qs are
e-spanning for (02,%,). Finally, assume that for all i = 1,2,3 and any Q; € P\Q; it holds that

<M2QI7 M2(QI - )> - 2EHQI QJH (\/7+ E) \/EE + (5 (B )
(IMQill + v2¢) - (IM2(Qi = @)l +2v/2¢) ro :

for some r > 0 such that mini_1 23 |[M2Q:|| > r + \/2¢ and for some § € R with

Then there exists no solution to Rupert’s problem R(a)M(61, 1) P C M(62,p2) P° with
(01, 01,02, 02,0) € [l £ 6,5, £¢e,0.+e, 5, e, a+e] CR.
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Motivation for rational approximation

R ~R4.5.1 -~/

A( - SageMath version 10.0, Release Date: 2023-05-20
> 1 + 10 ( 16) > 1 Using Python 3.11.1. Type "help()" for help.

[1] FALSE sage: 1 + 107(-16) > 1
True
> | sage: I
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Rational approximation
©00

Motivation for rational approximation

R ~R451 -~/

A( - SageMath version 10.0, Release Date: 2023-05-20
> 1 + 10 ( 16) > 1 Using Python 3.11.1. Type "help()" for help.

[1] FALSE sage: 1 + 107(-16) > 1
> | o
imprecise but fast exact but slow
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Rational approximation
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|dea of rational approximation  := 10719

X X X
COSQ(X) ::1_?:|:+H...+E.

By replacing sin, cos with sing, cosg define the functions
R@(a)v R(ED(O‘)? X@(@, (P)v MQ(Hﬂ 90)7 M(%(H’ 30), M6(9, SD)'
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Rational approximation
000

|dea of rational approximation  := 10719

. x3 x5 x25
San(X) _:x_?:':+§..._|_ 25]7
_ x2 x4 x24
cosg(x) ==1—= 5 F+57 -+ o5

By replacing sin, cos with sing, cosg define the functions
R@(a)v R@(O‘)7 X@(@, (P)? M@(Q, 90)7 M&(Ha QO), Mé(Q, SD)'

Let o, 0, p € [—4,4]. Then it holds that

IR(ex) = Rg(a)ll, IR () = Ro(e)ll, 1X(6, ) — Xa(6, o)1, IM(6, ) — Mg(0, p)I| < &.

Moreover,
|Ra(a)l, IRy (), 1 X (8, o)II, 1Mo (8, ©)|| <1+ k.
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Rational approximation
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Rational global theorem

Theorem (Rational Global Theorem)

Let P be a pointsymmetric convex polyhedron with radius p =1 and P a k-rational
approximation. Let S € P. Further let ¢ > 0 and 01,5 P15 02,0y, a € QN [—4,4]. Let
w € Q? be a unit vector. Denote My = Mg(01,%;), Mp = MQ(02, ©,) as well as

V = I\/IQ(Hl, ), Mi¥ = MQ(01, ©;) and analogously for M2 , My? . Finally set

G = (Ry(@M15, w) — e - (|(RG(@MS, w)| + |(Ro(@M;' S, w)| + |(Ro(@Mi* S, w))
—9e2/2 — 4k(1 + 3¢),
HY = (WP, w) + ¢ - (|(MR P, w)| + |(Mo? P, w)|) + 262 + 3k(1 + 2¢).

If G2 > maxp, HP then there does not exist a solution to Rupert’s condition with

(61, 1,02, p2,a) € [@1 te, o £,0, £ £, Py e, atel.
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[e]e] 000 @0000

00000 00000 0000000 0000000000

Wishlist for a solid

=

Not Rupert

]

many symmetries

]

no mirrorsymmetry because of (A;) and (B:)

B

local theorem always applicable

]

pointsymmetry

not too many vertices

YA
b o
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The Noperthedron
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Definition of the Noperthedron
N P 2rkY L
Cs0 = {( 1)‘R, <15 > : k_o,...,14,£_0,1}.

. 152024884 | (6632738028 | (8193990033
S S 0 . G=—— 6106048881 |, C3:= — (5298215006
259375205 \ 510152163 10 \ 3980949609 107\ 1230614493

Note: ||Ci]| =1 and 5% < [|Gi|| < 155 for i =2,3.

Definition
Define the set of points NOP C R3 by the action of C3g on Cyi, Gy, C3:

NOP =C3p- GG UC30- GG UC3g - Cs.
The Noperthedron, NOP has 90 vertices. NOP is pointsymmetric since —Id € Csp.
Symmetries, e.g.: M(68 + 27 /15, ) - NOP = M(6,¢) - NOP = 61, 6> € [0,27/15).

35/38



The Noperthedron
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Certificate of computer proof

D T | #C | IDIC | sp | Bimin | Otimax | P1min | Promax | 02min | P2max | @omin | Poomax | Gmin Gmax | P | Pa | Ps | Q1 | Q | Q| v | og W wy wa s
[ 3 4 T T 0 64..00 [ 48..00 0 64..00 [ 4..00 | -24..00 | 24..00

T 3 [ 30 5 2 0 16..00 0 48.00 0 0 24.00 | -24.00 | 24.00

) 3 [ 30 | 46.67 | 2 | 16.00 | 32.00 0 48.00 0 0 24.00 | -24.00 | 24.00

3 3 [ 30 | 9477 [ 2 | 32.00 | 48.00 0 48.00 0 0 24.00 | -24..00 | 24.00

1 3 [ 30 | 14.51 [ 2 | 48.00 | 64.00 0 48.00 0 0 24.00 | -24..00 | 24..00

5 3 4 35 | 3 0 16..00 0 16..00 0 0 24.00 | -24..00 | 24..00

3 3 4 [70.31 [ 3 0 16.00 | 16.00 | 32.00 0 0 24.00 | -24..00 | 24..00

7 3 4 [10.67 [ 3 0 16.00 | 32.00 | 48.00 0 0 24.00 | -24..00 | 24..00

- : : : : : : : :
o1 | 1 0 §0..00 [ §0.00 | 80.00 | 16.00 | 80.60 | 16.20 | -23.40 53.73 | 15.64 | 16.45 | 39
97 | 1 0 8000 | 80.00 | 16.00 0 80..00 [ 80..60 | -24..00 98.92 | 35.15 | 10.33 | 37
245 | 2 0 20..00 0 20..00 0 0 20.40 | -22.20 30 | 31 | 38 | 79 | 80 | 87 | 60 | 1

246 | 1 0 20..00 0 20..00 0 20..40 | 40.80 | -23..60 71.05 | 19.88 | 20.37 | 39
247 | 1 0 20..00 0 20..00 0 20..40 | 40.80 | -22.20 71..05 | 19.88 | 20.37 | 39
218 | 2 0 20..00 0 20..00 | 20..00 [ 20..40 | -23..60 30 | 31 | 38 | 70 | 80 | 87 | 69 | 1

210 | 2 0 20..00 0 20..00 | 20..00 0 20..40 | -22.20 30 | 31 | 38 | 79 | 80 | 87 | 69 | 1
JE TR 18.00 | 64.00 | 46.00 | 48.00 | 48.00 | 64.00 | 22.80 | 24.00 | 22.80 | 24.00 33.40 | -14.51 | 14.49 | 78
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The Noperthedron
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Computer proof statistics

~ 18.000.000 global theorem applications
~ 600.000 local theorem applications
~ 3Gb uncompressed certificate (=~ 150Mb compressed)

~ 10h for creation of table (using floating points in R)

~ 30h for verification in SageMath
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The Noperthedron
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Conclusion and open question

m What about the remaining 3 Archimedean solids? In particular the
Rhombicosidodecahedron?

m Are there other ways to disprove the existence of local solutions?

m Is there a way to prove that a solid does not have Rupert’s property without a
huge case distinction?

m How to prove the conjectured Nieuwland numbers? 31/2/4 for the Octahedron is
open, also that the Dodecahedron and lcosahedron have v =~ 1.0108, a root of

P(x) = 2025x® — 11970x°® 4 17009x* — 9000x2 + 2000.
m What is the link to duality?
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