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Prince Rupert’s cube

Fact (Wallis, 1685)

It is possible to cut a hole inside the unit cube such that another unit cube can pass
through this hole.

How to understand this paradox? How to find the solution?
Which other solids have this property? Is there a characterization?
What is the “optimal” way to put a cube inside a cube? What about other solids?
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Rupert’s problem

A convex polyhedron P is called Rupert if a hole with the shape of a straight
tunnel can be cut into it such that a copy of P can be moved through this hole.

Rupert’s problem is the task to decide whether a given polyhedron is Rupert.
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Nieuwland’s number

Fact (Nieuwland, 1816)

It is possible to cut a hole inside the unit cube such that a cube with side length
less than 3

√
2/4 ≈ 1.0606 can pass through this hole.

The largest number ν ∈ R such that νP passes through some hole inside P is
called Nieuwland number of P.

For all solids it holds that ν ≥ 1.

P is Rupert ⇐⇒ ν(P) > 1.

ν of the Cube is exactly 3
√
2/4 [Nieuwland, 1816].
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Brief history of Rupert’s problem

The Cube is Rupert [conjectured by Prince Rupert, proved by Wallis 1685].
The Nieuwland number of the Cube is 3

√
2/4 [Nieuwland, 1816].

The Tetrahedron and Octahedron are Rupert [Scriba, 1968].
The Dodecahedron and Icosahedron are Rupert and explicit lower bounds on
Nieuwland numbers for all Platonic solids [Jerrard, Wetzel, Yuan, 2017].
8 out of 13 Archimedean solids are Rupert [Chai, Yuan, Zamfirescu, 2018].

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

All convex polyhedra have Rupert’s property.

9 of 13 Archimedean solids are Rupert [Hoffmann, 2018] [Lavau, 2019].
10 of 13 Archimedean solids and many other polyhedra are Rupert. Efficient way
for proving Rupert’s property. Theoretical algorithm for deciding. [S., Y., 2021].
11 of 13 Catalan solids are Rupert, improved optimization [Fredriksson, 2022].
The Noperthedron: a counter example to the conjecture [S., Y., 2025].
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Solids
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Definition of Rupert’s problem
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Definition of Rupert’s problem

Let M(θ, φ) : R3 → R2 be an orthogonal projection map in direction X (θ, φ) ∈ R3 and
R(α) : R2 → R2 be the rotation map.

X (θ, φ) := (cos θ sinφ, sin θ sinφ, cosφ)t ,

M(θ, φ) :=

(
− sin(θ) cos(θ) 0

− cos(θ) cos(φ) − sin(θ) cos(φ) sin(φ),

)
,

R(α) :=

(
cos(α) − sin(α)
sin(α) cos(α)

)
.

Definition

A point-symmetric polyhedron P has Rupert’s property, if there exist 5 parameters
α, θ1, θ2 ∈ [0, 2π) and φ1, φ2 ∈ [0, π] such that

R(α) ◦M(θ1, φ1)P ⊂ (M(θ2, φ2)P)
◦.
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A basic (Las Vegas) algorithm

Input: A centrally symmetric polyhedron P.
Output: The solution encoded by Ψ = (α, θ1, θ2, φ1, φ2) ∈ R5 if P is Rupert.

(1) Draw θ1, θ2 and α uniformly in [0, 2π), and φ1, φ2 uniformly in [0, π].

(2) Construct the two 3× 2 matrices A and B corresponding to the linear maps
R(α) ◦M(θ1, φ1) and M(θ2, φ2). Compute the two projections of P given by
P ′ := A · P and Q′ := B · P.

(3) Find vertices on the convex hulls of P ′ and Q′; denote them by P and Q.

(4) Decide whether P lies inside of Q by checking each vertex of P.

(5) If Step (4) yields a True, return the solution Ψ = (α, θ1, θ2, φ1, φ2). Otherwise,
repeat Steps (1)-(5).
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The Truncated Icosidodecahedron

Theorem (S., Y., 2021)

The Truncated Icosidodecahedron has Rupert’s property.

Proof.

α = 0.43584, θ1 = 2.77685, θ2 = 0.79061, φ1 = 2.09416, φ2 = 2.89674,
plus some verification of linear inequalities in Maple/SageMath.

9 / 38



Introduction Proving Rupert’s property A non-Rupert polyhedron Global theorem Local theorem Rational approximation The Noperthedron

The Truncated Icosidodecahedron

Theorem (S., Y., 2021)

The Truncated Icosidodecahedron has Rupert’s property.

Proof.

α = 0.43584, θ1 = 2.77685, θ2 = 0.79061, φ1 = 2.09416, φ2 = 2.89674,
plus some verification of linear inequalities in Maple/SageMath.

9 / 38



Introduction Proving Rupert’s property A non-Rupert polyhedron Global theorem Local theorem Rational approximation The Noperthedron

Platonic, Archimedean, Catalan and Johnson Solids

Theorem (S., Y., 2021)

In a few minutes it can be proven automatically that:

1 All 5 Platonic solids are Rupert.

2 At least 10 out of 13 Archimedean solids are Rupert.

3 At least 9 out of 13 Catalan solids are Rupert.

4 At least 82 out of 92 Johnson solids are Rupert.
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Are all convex polyhedra Rupert?

Conjecture (Jerrard, Wetzel, Yuan, 2017 and Chai, Yuan, Zamfirescu, 2018)

All convex polyhedra have Rupert’s property.

All Platonic solids are Rupert.

3 Archimedean solids remain open. One of them is point-symmetric.

Rhombicosidodecahedron natural candidate for disproving conjecture.

Rupertness: Probability that a random projection yields a solution.

Can estimate confidence intervals for Rupertness.

Conclusion: RID is significantly different from other regular solids.
It is likely that RID is a counter example to the conjecture.
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4 years later: The Noperthedron is not Rupert

Theorem (S., Y., 2025)

The Noperthedron, NOP, does not have Rupert’s property.
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Idea of proof

Partition the five-dimensional solution space

I = [0, 2π)× [0, π]× [0, 2π)× [0, π]× [−π, π)

into small parts and prove for each that no solution in that region exists.

Rough idea: Show that the “middle point” of any region does not yield a solution
and argue with effective continuity of the parameters that this also excludes an
explicit neighborhood around that point.

The global theorem is tailored for two generic projections of P, when some
vertex of the “smaller” projection P = R(α)M(θ1, φ1)P is strictly outside the
“larger” projection Q = M(θ2, φ2)P.

The local theorem can handle projections that look (almost) exactly the same,
for instance if θ1 ≈ θ2, φ1 ≈ φ2 and α ≈ 0.
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Motivation for global theorem

(θ1, φ1, θ2, φ2, α) = (0, 0, π/4, tan−1(
√
2), 0)

14 / 38
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Starting point of the global theorem

Recall:

X (θ, φ) := (cos θ sinφ, sin θ sinφ, cosφ)t ,

M(θ, φ) :=

(
− sin(θ) cos(θ) 0

− cos(θ) cos(φ) − sin(θ) cos(φ) sin(φ),

)
,

R(α) :=

(
cos(α) − sin(α)
sin(α) cos(α)

)
.

Lemma

Let ε > 0 and |θ − θ|, |φ− φ|, |α− α| ≤ ε then

∥M(θ, φ)−M(θ, φ)∥ <
√
2ε,

∥X (θ, φ)− X (θ, φ)∥ <
√
2ε,

∥R(α)M(θ, φ)− R(α)M(θ, φ)∥ <
√
5ε.

15 / 38
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Proof

Rx(α) :=

(
1 0 0
0 cosα − sinα
0 sinα cosα

)
,Ry (α) :=

(
cosα 0 − sinα
0 1 0

sinα 0 cosα

)
,Rz(α) :=

(
cosα − sinα 0
sinα cosα 0
0 0 1

)
,

X (θ, φ)t =
(
0 0 1

)
· Ry (φ) · Rz(−θ), M(θ, φ) =

(
0 1 0
−1 0 0

)
· Ry (φ) · Rz(−θ)

R(α)M(θ, φ) =

(
0 1 0
−1 0 0

)
· Rz(α) · Ry (φ) · Rz(−θ).

Lemma

For any α, β ∈ R one has ∥Rx(α)Ry (β)− Id ∥ ≤
√
α2 + β2.

Sketch of proof: Write Rx(α)Ry (β) = URx(Φ)U
−1 and take trace to obtain:

cos(α) + cos(β) + cos(α) cos(β) = 1 + 2 cos(Φ).

Jensen on f (t) = cos(
√
t) shows LHS ≥ 1 + 2 cos(

√
α2 + β2), thus |Φ| ≤

√
α2 + β2.
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First version of the global theorem

Recall the definition of Rupert’s property

R(α)M(θ1, φ1)P ⊂ (M(θ2, φ2)P)
◦.

If Ψ ∈ R5 is a solution, then for any vector w ∈ R2 it holds that

⟨R(α)M(θ1, φ1)S ,w⟩ < max
P∈P

⟨M(θ2, φ2)P,w⟩.

Theorem (Global theorem v0.1)

Let P be convex, pointsymmetric with radius 1. Assume:

⟨R(α)M(θ1, φ1)S ,w⟩ > max
P∈P

⟨M(θ2, φ2)P,w⟩+ (
√
2 +

√
5)ε

for some S ∈ P and w ∈ R2 with ∥w∥ = 1, then there cannot be a solution
(θ1, φ1, θ2, φ2, α) ∈ [θ1 ± ε, φ1 ± ε, θ2 ± ε, φ2 ± ε, α± ε].

17 / 38
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Example

Consider the Octahedron O = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)} ⊆ R3 and two
projection directions (θ1, φ1) = (0, 0) and (θ2, φ2) = (π/4, tan−1(

√
2)). Set

α = 0.

Goal: show this is no solution to Rupert’s problem and there exists ε > 0 such
that there is also no solution (θ1, φ1, θ2, φ2, α) with |θi − θi |, |φi − φi |, |α| ≤ ε.
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Example continued

Following the global theorem we first compute:

M(θ1, φ1) =

(
0 1 0
−1 0 0

)
and M(θ2, φ2) =

(
−
√
2/2

√
2/2 0

−
√
6/6 −

√
6/6

√
6/3

)
.

We choose S = O3 = (0, 1, 0) and w = (1, 0), thus ⟨R(α)M(θ1, φ1)S ,w⟩ = 1.

⟨M(θ2, φ2)P,w⟩ =


0 for P = M(θ2, φ2)Oi with i = 1, 6,√
2/2 for P = M(θ2, φ2)Oi with i = 3, 4,

−
√
2/2 for P = M(θ2, φ2)Oi with i = 2, 5.

Thus if ε > 0 is chosen so that

1 >
√
2/2+(

√
2+

√
5)ε, e.g., ε = 0.08

there is no solution in

(0, 0, π/4, tan−1(
√
2), 0)± ε ⊆ R5.
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Actual Global theorem

Theorem (Global Theorem v1.0)

Let P be a pointsymmetric convex polyhedron with radius 1 and let S ∈ P. Let
w ∈ R2 be a unit vector and denote M1 := M(θ1, φ1), M2 := M(θ2, φ2) as well as

M1
θ
:= Mθ(θ1, φ1), M1

φ
:= Mφ(θ1, φ1) and analogously for M2

θ
,M2

φ
. Finally set

G := ⟨R(α)M1S ,w⟩ − ε ·
(
|⟨R ′(α)M1S ,w⟩|+ |⟨R(α)M1

θ
S ,w⟩|+ |⟨R(α)M1

φ
S ,w⟩|

)
− 9ε2/2,

HP := ⟨M2P,w⟩+ ε ·
(
|⟨M2

θ
P,w⟩|+ |⟨M2

φ
P,w⟩|

)
+ 2ε2, for P ∈ P .

If G > maxP∈PHP then there does not exist a solution to Rupert’s condition with

(θ1, φ1, θ2, φ2, α) ∈ [θ1 ± ε, φ1 ± ε, θ2 ± ε, φ2 ± ε, α± ε] ⊆ R5.

ε = 0.08 from Example can be replaced by ε = 0.164 20 / 38
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Motivation for local theorem: θ1 = θ2, φ1 = φ2, α = 0

(θ1, φ1, θ2, φ2, α) = (π/4, tan−1(
√
2), π/4, tan−1(

√
2), 0)

A := M(θ, φ)O1,

B := M(θ, φ)O2,

C := M(θ, φ)O3

Fact:

∥A∥2+∥B∥2+∥C∥2 = 2

=⇒ no local solution
from this direction
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Conditions for the three-point method

P1,P2,P3 are all in front of the projection:

⟨X (θ, φ),Pi ⟩ > 0.

The origin is inside the projected triangle M(θ, φ) · {P1,P2,P3}:
⟨R(π/2)M(θ, φ)P1,M(θ, φ)P2⟩ > 0,

⟨R(π/2)M(θ, φ)P2,M(θ, φ)P3⟩ > 0,

⟨R(π/2)M(θ, φ)P3,M(θ, φ)P1⟩ > 0.

The projected points M(θ, φ) · {P1,P2,P3} are not to close to the origin:

∥M(θ, φ)Pi∥ > r .

The points P1,P2,P3 are locally maximally distant.
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Conditions for the three-point method

P1,P2,P3 are all in front of the projection:

⟨X (θ, φ),Pi ⟩ >
√
2ε.

The origin is inside the projected triangle M(θ, φ) · {P1,P2,P3}:
⟨R(π/2)M(θ, φ)P1,M(θ, φ)P2⟩ >

√
2ε(

√
2 + ε),

⟨R(π/2)M(θ, φ)P2,M(θ, φ)P3⟩ >
√
2ε(

√
2 + ε),

⟨R(π/2)M(θ, φ)P3,M(θ, φ)P1⟩ >
√
2ε(

√
2 + ε).

The projected points M(θ, φ) · {P1,P2,P3} are not to close to the origin:

∥M(θ, φ)Pi∥ > r+
√
2ε.

The points P1,P2,P3 are
√
5ε-locally maximally distant. 22 / 38
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ε-spanning points

Definition

Three points P1,P2,P3 with ∥P1∥, ∥P2∥, ∥P3∥ ≤ 1 are called ε-spanning for (θ, φ) if:

⟨R(π/2)M(θ, φ)P1,M(θ, φ)P2⟩ >
√
2ε(

√
2 + ε).

⟨R(π/2)M(θ, φ)P2,M(θ, φ)P3⟩ >
√
2ε(

√
2 + ε).

⟨R(π/2)M(θ, φ)P3,M(θ, φ)P1⟩ >
√
2ε(

√
2 + ε).

Lemma

Let P1,P2,P3 with ∥P1∥, ∥P2∥, ∥P3∥ ≤ 1 be ε-spanning for (θ, φ) and let θ, φ ∈ R
such that |θ − θ|, |φ− φ| ≤ ε. Assume that ⟨X (θ, φ),Pi ⟩ > 0 for i = 1, 2, 3. Then

X (θ, φ) ∈ span+(P1,P2,P3).
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Locally maximally distant points

Definition

Let P ⊂ R2 be a convex polygon and Q ∈ P. Assume that for some Q ∈ R2 it holds
that Q ∈ Discδ(Q), i.e. ∥Q − Q∥ < δ. Define Sectδ(Q) := Discδ(Q) ∩ P◦.
Moreover, Q ∈ P is called δ-locally maximally distant with respect to Q (δ-LMD(Q))
if for all A ∈ Sectδ(Q) it holds that ∥Q∥ > ∥A∥.
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Sufficient condition of LMD

Lemma

Let P be a convex polygon and Q ∈ P. Let Q ∈ R2 with ∥Q − Q∥ < δ for some
δ > 0. Assume that for some r > 0 such that ∥Q∥ > r it holds that

⟨Q,Q − Pj⟩
∥Q∥∥Q − Pj∥

≥ δ

r
,

for all vertices Pj ∈ P \Q. Then Q ∈ P is δ-LMD(Q).

Proof sketch.

Assume A ∈ Sectδ(Q) = Discδ(Q) ∩ P◦, use cos(∠(O,Q,Pj)) =
⟨Q,Q−Pj ⟩

∥Q∥∥Q−Pj∥ ≥ δ
r to

conclude that cos(∠(O,Q,A)) ≥ δ/r . Therefore,

∥A∥2 − ∥Q∥2 = ∥Q − A∥ · (∥Q − A∥ − 2∥Q∥ cos(∠(O,Q,A))) < 0.
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Local Theorem

Theorem (Local Theorem v0.1)

Let P be a convex, pointsymmetric polyhedron with radius 1 and P1,P2,P3 ∈ P. Set
X := X (θ, φ), M := M(θ, φ). Assume that

⟨X ,Pi ⟩ >
√
2ε (Aε)

for all i = 1, 2, 3. Moreover, assume that P1,P2,P3 are ε-spanning for (θ, φ). Finally,
assume that for all i = 1, 2, 3 and any Pj ∈ P \Pi it holds that

⟨MPi ,M(Pi − Pj)⟩ − 2ε∥Pi − Pj∥ · (
√
2 + ε)(

∥MPi∥+
√
2ε
)
·
(
∥M(Pi − Pj)∥+ 2

√
2ε
) >

√
5ε

r
, (Bε)

for some r > 0 such that mini=1,2,3 ∥MPi∥ > r +
√
2ε. Then there exists no solution

to Rupert’s problem with (θ1, φ1, θ2, φ2, α) ∈ [θ ± ε, φ± ε, θ ± ε, φ± ε,±ε].
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Some more lemmas

Lemma (Pythagoras)

For any P ∈ R3 one has
∥∥M(θ, φ)P

∥∥2 = ∥P∥2 − ⟨X (θ, φ),P⟩2.

Lemma (Trinity)

Let V1,V2,V3,Y ,Z ∈ R3 with ∥Y ∥ = ∥Z∥ and Y ,Z ∈ span+(V1,V2,V3). Then at
least one of the following inequalities does not hold:

⟨V1,Y ⟩ > ⟨V1,Z ⟩,
⟨V2,Y ⟩ > ⟨V2,Z ⟩,
⟨V3,Y ⟩ > ⟨V3,Z ⟩.
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Proof sketch of the Local Theorem

Proof sketch.

1 Assume (θ1, φ1, θ2, φ2, α) ∈ [θ ± ε, φ± ε, θ ± ε, φ± ε,±ε], let

M1 = M(θ1, φ1),M2 = M(θ2, φ2),X1 = X (θ1, φ1),X2 = X (θ2, φ2).

2 (Bε) ⇒ M2Pi is
√
5ε-LMD wrt. MPi .

3 Rupert’s property +
√
5ε-LMD ⇒ ∥M2Pi∥ > ∥M1Pi∥ for i = 1, 2, 3.

4 (Aε) ⇒ ⟨X1,Pi ⟩, ⟨X2,Pi ⟩ > 0.

5 (3), (4) and (Pythagoras) ⇒ ⟨X1,Pi ⟩ > ⟨X2,Pi ⟩
6 P1,P2,P3 are ε-spanning (+ Lemma)⇒ X1,X2 ∈ span+(P1,P2,P3)

7 (5)+(6) + Trinity lemma ⇒ contradiction.
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Example continued
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Theorem (Local Theorem v1.0)

Let P be a polyhedron with radius 1 and P1,P2,P3,Q1,Q2,Q3 ∈ P. Assume that P1,P2,P3 and
Q1,Q2,Q3 are congruent. Let ε > 0 and θ1, φ1, θ2, φ2, α ∈ R, then set X1 := X (θ1, φ1),X2 := X (θ2, φ2)
as well as M1 := M(θ1, φ1),M2 := M(θ2, φ2). Assume that there exist σP , σQ ∈ {0, 1} such that

(−1)σP ⟨X1,Pi ⟩ >
√
2ε and (−1)σQ ⟨X2,Qi ⟩ >

√
2ε, (Aε)

for all i = 1, 2, 3. Moreover, assume that P1,P2,P3 are ε-spanning for (θ1, φ1) and that Q1,Q2,Q3 are
ε-spanning for (θ2, φ2). Finally, assume that for all i = 1, 2, 3 and any Qj ∈ P \Qi it holds that

⟨M2Qi ,M2(Qi − Qj)⟩ − 2ε∥Qi − Qj∥ · (
√
2 + ε)(

∥M2Qi∥+
√
2ε
)
·
(
∥M2(Qi − Qj)∥+ 2

√
2ε
) >

√
5ε+ δ

r
, (Bε)

for some r > 0 such that mini=1,2,3 ∥M2Qi∥ > r +
√
2ε and for some δ ∈ R with

δ ≥ max
i=1,2,3

∥∥R(α)M1Pi −M2Qi

∥∥ /2.
Then there exists no solution to Rupert’s problem R(α)M(θ1, φ1)P ⊂ M(θ2, φ2)P

◦ with

(θ1, φ1, θ2, φ2, α) ∈ [θ1 ± ε, φ1 ± ε, θ2 ± ε, φ2 ± ε, α± ε] ⊆ R5.
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Motivation for rational approximation

imprecise but fast exact but slow
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Motivation for rational approximation

imprecise but fast exact but slow
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Idea of rational approximation κ := 10−10

sinQ(x) := x − x3

3
∓+

x5

5!
· · ·+ x25

25!
,

cosQ(x) := 1− x2

2
∓+

x4

4!
· · ·+ x24

24!
.

By replacing sin, cos with sinQ, cosQ define the functions

RQ(α),R
′
Q(α),XQ(θ, φ),MQ(θ, φ),M

θ
Q(θ, φ),M

φ
Q(θ, φ).

Lemma

Let α, θ, φ ∈ [−4, 4]. Then it holds that

∥R(α)− RQ(α)∥, ∥R ′(α)− R ′
Q(α)∥, ∥X (θ, φ)− XQ(θ, φ)∥, ∥M(θ, φ)−MQ(θ, φ)∥ ≤ κ.

Moreover,
∥RQ(α)∥, ∥R ′

Q(α)∥, ∥XQ(θ, φ)∥, ∥MQ(θ, φ)∥ ≤ 1 + κ.
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Rational global theorem

Theorem (Rational Global Theorem)

Let P be a pointsymmetric convex polyhedron with radius ρ = 1 and P̃ a κ-rational
approximation. Let S̃ ∈ P̃. Further let ε > 0 and θ1, φ1, θ2, φ2, α ∈ Q ∩ [−4, 4]. Let
w ∈ Q2 be a unit vector. Denote M1 := MQ(θ1, φ1), M2 := MQ(θ2, φ2) as well as

M1
θ
:= Mθ

Q(θ1, φ1), M1
φ
:= Mφ

Q(θ1, φ1) and analogously for M2
θ
,M2

φ
. Finally set

GQ := ⟨RQ(α)M1S̃ ,w⟩ − ε ·
(
|⟨R ′

Q(α)M1S̃ ,w⟩|+ |⟨RQ(α)M1
θ
S̃ ,w⟩|+ |⟨RQ(α)M1

φ
S̃ ,w⟩|

)
− 9ε2/2− 4κ(1 + 3ε),

HQ
P := ⟨M2P,w⟩+ ε ·

(
|⟨M2

θ
P,w⟩|+ |⟨M2

φ
P,w⟩|

)
+ 2ε2 + 3κ(1 + 2ε).

If GQ > max
P∈P̃HQ

P then there does not exist a solution to Rupert’s condition with

(θ1, φ1, θ2, φ2, α) ∈ [θ1 ± ε, φ1 ± ε, θ2 ± ε, φ2 ± ε, α± ε].
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Wishlist for a solid

1 Not Rupert

2 many symmetries

3 no mirrorsymmetry because of (Aε) and (Bε)

4 local theorem always applicable

5 pointsymmetry

6 not too many vertices
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Definition of the Noperthedron

C30 :=
{
(−1)ℓRz

(
2πk

15

)
: k = 0, . . . , 14; ℓ = 0, 1

}
.

C1 :=
1

259375205

152024884
0

210152163

 , C2 :=
1

1010

6632738028
6106948881
3980949609

 , C3 :=
1

1010

8193990033
5298215096
1230614493

 .

Note: ∥C1∥ = 1 and 98
100 < ∥Ci∥ < 99

100 for i = 2, 3.

Definition

Define the set of points NOP ⊆ R3 by the action of C30 on C1,C2,C3:

NOP := C30 · C1 ∪ C30 · C2 ∪ C30 · C3.

The Noperthedron, NOP has 90 vertices. NOP is pointsymmetric since − Id ∈ C30.
Symmetries, e.g.: M(θ + 2π/15, φ) ·NOP = M(θ, φ) ·NOP ⇒ θ1, θ2 ∈ [0, 2π/15).
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Certificate of computer proof

36 / 38



Introduction Proving Rupert’s property A non-Rupert polyhedron Global theorem Local theorem Rational approximation The Noperthedron

Computer proof statistics

≈ 18.000.000 global theorem applications

≈ 600.000 local theorem applications

≈ 3Gb uncompressed certificate (≈ 150Mb compressed)

≈ 10h for creation of table (using floating points in R)

≈ 30h for verification in SageMath
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Conclusion and open question

What about the remaining 3 Archimedean solids? In particular the
Rhombicosidodecahedron?
Are there other ways to disprove the existence of local solutions?
Is there a way to prove that a solid does not have Rupert’s property without a
huge case distinction?
How to prove the conjectured Nieuwland numbers? 3

√
2/4 for the Octahedron is

open, also that the Dodecahedron and Icosahedron have ν ≈ 1.0108, a root of

P(x) = 2025x8 − 11970x6 + 17009x4 − 9000x2 + 2000.

What is the link to duality?
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