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Motivating examples

Recurrence for Apéry numbers:

An =
n∑

k=0

(
n

k

)2(n + k

k

)2

satisfies (n + 1)3An+1 = (17n2 + 17n + 5)(2n + 1)An − n3An−1.

Generating function of moments:

mn =

ˆ 1

0
xn · 3

√
x(1− x) dx satisfies

∑
k≥0

mkt
k = c · 2F1

[
1 4

3
8
3

; t

]
.

Surface area a projection to R3 of the Clifford torus:ˆ 2π

0

ˆ 2π

0

(
√
2 + sin v) du dv

(1 + 2t(
√
2 + sin v) cos u + t2(3 + 2

√
2 sin v))2

=
4
√
2π2

(
1− t2

)
(t2 − 6t + 1)2

2F1

[
−1

2 − 1
2

1
;

4t

(1− t)2

]
.
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Algorithmic proofs

An =
n∑

k=0

(
n

k

)2(n + k

k

)2

︸ ︷︷ ︸
=:an,k

satisfies (n+1)3An+1 = (17n2+17n+5)(2n+1)An−n3An−1.

[van der Poorten, 1978]:
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Algorithmic proofs

An =
n∑

k=0

(
n

k

)2(n + k

k

)2

︸ ︷︷ ︸
=:an,k

satisfies (n+1)3An+1 = (17n2+17n+5)(2n+1)An−n3An−1.

> Zeilberger(a, n, k, N); finds in < 0.02 seconds:

L = (n + 2)3N2 − (17n2 + 51n + 39)(2n + 3)N + (n + 1)3 and

C = (k2 − 3/2k − 2n2 − 6n − 4)k4(16n + 24)/(k − n − 1)/(k − n − 2),

with the property that (N · an,k := an+1,k and K · an,k := an,k+1):

L ·
(
n

k

)2(n + k

k

)2

= (K − 1) · C
(
n

k

)2(n + k

k

)2

.

Sum over k from 0 to n and conclude.
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Algorithmic proofs

mn =

ˆ 1

0
xn · 3

√
x(1− x)︸ ︷︷ ︸

=:fn(x)

dx satisfies
∑
k≥0

mkt
k = 2F1

[
1 4

3
8
3

; t

]
· 2π2

15Γ(2/3)3
.

> creative telescoping(f,n::shift,x::diff); finds in < 0.1 seconds:

L = (3n + 8)N − (3n + 4) and C (x) = 3x(x − 1),

with the property that (N · fn(x) = fn+1(x)):

L · xn 3
√

x(1− x) = ∂x(C (x) · xn 3
√
x(1− x))

It follows that L ·
´ 1
0 xn 3

√
x(1− x)dx = 0 and hence (3n + 8)mn+1 = (3n + 4)mn.
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Algorithmic proofs
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Algorithmic proofs

˛
γ

2(2
√
2 y − y2 + 1)x dxdy(

2
√
2 t2x y2 + 2

√
2 t x2y − t x2y2 − 2

√
2 t2x − 2t2xy + 2

√
2 ty + t x2 − t y2 − 2yx + t

)2
=

4
√
2π2

(
1− t2

)
(t2 − 6t + 1)2

2F1

[
−1

2 − 1
2

1
;

4t

(1− t)2

]
.
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Algorithmic proofs

˛
γ

2(2
√
2 y − y2 + 1)x dxdy(

2
√
2 t2x y2 + 2

√
2 t x2y − t x2y2 − 2

√
2 t2x − 2t2xy + 2

√
2 ty + t x2 − t y2 − 2yx + t

)2
=

4
√
2π2

(
1− t2

)
(t2 − 6t + 1)2

2F1

[
−1

2 − 1
2

1
;

4t

(1− t)2

]
.

> FindCreativeTelescoping[F, {Der[x], Der[y]}, Der[t]]; finds in 10 seconds:

L =t
(
3t2 − 1

) (
9t4 − 2t2 + 1

) (
3t2 + 1

)2
∂2
t +

(
3t2 + 1

) (
729t8 + 162t6 − 192t4 + 38t2 − 1

)
∂t

+12t
(
324t8 + 333t6 + 51t4 − 53t2 + 1

)
, and

C1,C2 ∈ Q(x , y , t) with the property that:

L · F = ∂xC1 + ∂yC2.

Therefore it follows that L ·
¸
γ F = 0. Solving Ly = 0 we find the right-hand side.
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Definitions and interactions

Diagonals

Periods

P-recursive/D-finite

√
1− t +

√
1 + t

∑
n
∑
n

k=0
(
n

k
)
2 (
n+kk
)
2
t n

∑ n

( 2n
n

) 2 t
n

exp(t)

log(1− t)

nFn−1

[ a
b ; t
]

A power series f (t) ∈ Q[[t]] is D-finite
if it satisfies a linear differential equation
with polynomial coefficients:

pn(t)f
(n)(t) + · · ·+ p0(t)f (t) = 0.

This equation can be rewritten: L · f = 0,

L = pn(t)∂
n
t + · · ·+ p0(t) ∈ Q[t][∂t ].

Let (α)n = α · (α + 1) · · · (α + n − 1).

Then 2F1
[
a b
c ; t

]
:=
∑

n≥0
(a)n·(b)n
(c)n·n! t

n

satisfies

t(1−t)f ′′(t)+(c−(a+b+1)t)f ′(t)−abf (t) = 0.
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Definitions and interactions

Diagonals

Periods

P-recursive/D-finite

√
1− t +

√
1 + t

∑
n
∑
n

k=0
(
n

k
)
2 (
n+kk
)
2
t n

∑ n

( 2n
n

) 2 t
n

exp(t)

log(1− t)

nFn−1

[ a
b ; t
]

A sequence (un)n≥0 is P-recursive, if it
satisfies a linear recurrence with polyno-
mial coefficients:

cr (n)un+r + · · ·+ c0(n)un = 0.

Let (α)n = α · (α+ 1) · · · (α+ n − 1).

Then un = (a)n·(b)n
(c)n·n! satisfies

(c + n)(n + 1)un+1 − (a+ n)(b + n)un = 0.
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Definitions and interactions

Diagonals

Periods

P-recursive/D-finite

√
1− t +

√
1 + t

∑
n
∑
n

k=0
(
n

k
)
2 (
n+kk
)
2
t n

∑ n

( 2n
n

) 2 t
n

exp(t)

log(1− t)

nFn−1

[ a
b ; t
]

A power series f (t) ∈ Q[[t]] is called a
Period function if it is an integral of a
rational function in t and x1, . . . , xn over
a semi-algebraic set.

p(t) = 4

ˆ 1

0

√
1− t2x2

1− x2
dx

= 4

‹
dxdy

1− 1−t2x2

(1−x2)y2

and

((t − t3)∂2 + (1− t2)∂ + t) · p = 0,

p(t) = 2π − π

2
t2 − 3π

32
t4 − · · · .

André-Bombieri-Katz’s theorem: A Period function is a G-function [André, 1989].

Bombieri-Dwork conjecture: Any G-function is a Period function.
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Definitions and interactions

Diagonals

Periods

P-recursive/D-finite

√
1− t +

√
1 + t

∑
n
∑
n

k=0
(
n

k
)
2 (
n+kk
)
2
t n

∑ n

( 2n
n

) 2 t
n

exp(t)

log(1− t)

nFn−1

[ a
b ; t
]

A power series f (t) ∈ Q[[t]] =
∑

k ukt
k is

called a Diagonal if there exists a rational
function

R =
∑

i1,...,in≥0

ci1,...,inx
i1
1 · · · x inn ∈ Q(x1, . . . , xn)

such that

f (t) = Diag(R) :=
∑
k≥0

ck,...,kt
k .

Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k≥0 is a multiple binomial sum.

Diag
1

1− x − y
= Diag

∑
i ,j≥0

(
i + j

j

)
x iy j =

∑
k≥0

(
2n

n

)
tk =

1√
1− 4t
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i1,...,in≥0

ci1,...,inx
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1 · · · x inn ∈ Q(x1, . . . , xn)

such that

f (t) = Diag(R) :=
∑
k≥0

ck,...,kt
k .

Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k≥0 is a multiple binomial sum.

Diag
1

1− x − y
= [x−1]

1

x

1

1− x − t/x
=

1

2πi

˛
|x |=ϵ

dx

x − x2 − t
= (1− 4t)−

1
2
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Definitions and interactions
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k is
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R =
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ci1,...,inx
i1
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such that

f (t) = Diag(R) :=
∑
k≥0

ck,...,kt
k .

Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k≥0 is a multiple binomial sum.

Christol’s conjecture: A convergent D-finite power series in Z[[t]] is a Diagonal.
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Principle of Creative Telescoping

Goal: Given a Period function or Diagonal, find an annihilating ODE.

More precisely: Given R ∈ Q(x1, . . . , xn ; t) and a closed cycle γ ⊆ Cn, find

L = pn(t)∂
n
t + · · ·+ p0(t) ∈ Q[t][∂t ], such that L ·

˛
γ
Rdx = 0.

Note:
´
γ ∂xiCdx =

´
∂γ Cdx =

´
∅ Cdx = 0 for any rational function C ∈ Q(x , t).

So we need to find

L ∈ Q[t][∂t ], and C1, . . . ,Cn ∈ Q(x1, . . . , xn , t), such that

L · R = ∂x1C1 + · · ·+ ∂xnCn.

Principle of Creative Telescoping

n∑
k=0

pk(t)
dkR

dt
= ∂x1C1 + · · ·+ ∂xnC1 ⇒

(
n∑

k=0

pk(t)∂
k
t

)
·
˛
γ
Rdx = 0.

The telescoper and certificates always exist and can be found algorithmically.
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The Almkvist-Zeilberger algorithm [1990]

Input: A hyperexponential function H(t, x), i.e. ∂tH/H and ∂xH/H ∈ Q(t, x).
Output: A linear differential operator P(t, ∂t) ∈ Q[t][∂t ] and G (t, x) ∈ Q(t, x), s.t.

P · H = ∂x (G · H) .

Algorithm: Let L = Q(t). For r = 0, 1, 2, . . . do:

1 Compute a(t, x) = ∂xH/H and bk(t, x) = ∂k
t H/H for k = 0, . . . , r .

2 Decide whether the (ordinary, linear, inhomogeneous, parametrized) diff. equation

∂xG + a(t, x)G =
r∑

k=0

ck(t)bk(t, x)

has a rational solution G ∈ L(x) for some c0(t), . . . , cr (t) ∈ L not all zero.

3 If found solution in (2), return P =
∑r

k=0 ck∂
k
t and G ; else increase r and repeat.

6 / 25

“I could never resist a definite integral.”
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Some history of Creative Telescoping

Indefinite integration/summation and working examples

Sums: [Bernoulli, Fasenmyer, Gosper,...]
Integrals: [Legendre, Ostrogradsky, Hermite, Picard, Manin, Griffiths, Feynman, ...]

Algorithmic Creative Telescoping (algorithmic definite summation&integration):

1G: brutal elimination: [Fasenmyer, 1947], [Zeilberger, 1990], [Takayama, 1990]
2G: rational solutions of linear ODEs: [Zeilberger, 1990], [Almkvist,Zeilberger, 1990],
[Chyzak, 2000], [Koutschan, 2010]
3G: 2G + linear algebra + bounds: [Apagodu, Zeilberger, 2005], [Koutschan 2010],
[Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]
4G: based on (Hermite- and generalized Griffiths-Dwork) reduction
[Bostan, Chen, Chyzak, Kauers, Koutschan, Li, Lairez, Salvy, Singer,...]

7 / 25

ˆ
P(x)

Q(x)
dx =

P1(x)

Q1(x)
+

ˆ
P2(x)

Q2(x)
dx

n∑
k=1

1

k(k + 1)
= 1− 1

n + 1

ˆ 1

0

dx√
x(1− x)(1− xt)

= π2F1

[ 1
2

1
2

1
; t

]
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Creative Telescoping and de Rham cohomology

Let L = Q(t), f ∈ L[x0, . . . , xn] = L[x ] and γ ⊆ Cn a closed n-cycle.
Denote by L[x , 1/f ]p = {F ∈ L[x , 1/f ] : F (λx) = λpF (x),∀λ ∈ Q(t)}.
We wish to compute the differential equation satisfied by˛

γ
F (t; x0, . . . , xn)dx , whereF = a/f ℓ ∈ L[x , 1/f ]−n−1.

Therefore we wish to find a non-trivial element in

Hpr
f := L[x , 1/f ]−n−1/Df , where Df := spanQ({∂xiC : C ∈ L[x , 1/f ]−n})

Generalized Griffiths-Dwork Reduction: F 7→ [F ], s.t.
¸
γ Fdx = 0 ⇐⇒ [F ] = 0.

Theorem [Griffiths 1969, Bostan, Lairez, Salvy 2013, Lairez 2016]

Assume that L[x ]/⟨∂x0f , . . . , ∂xn f ⟩ is finite-dimensional over L. Then Hpr
f is finitely

generated over L. Moreover the Generalized Griffiths-Dwork Reduction can be used to
compute the (minimal regular) telescoper.

8 / 25

“the certificate is not needed, its

existence and regularity are sufficient.”
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Issues with singularities: non-regular certificates

The following example originates in [Picard, 1899]: Let Pt(u) = u3 + t, then

F =
x − y

z2 − Pt(x)Pt(y)

= ∂x
2Pt(x)

(x − y)(z2 − Pt(x)Pt(y))
+ ∂y

2Pt(y)

(x − y)(z2 − Pt(x)Pt(y))
+ ∂z

3(x2 + y2)z

(x − y)(z2 − Pt(x)Pt(y))
,

So one has 1 · F = ∂xC1 + ∂yC2 + ∂zC3, however:˛
γ
F dx dy dz ̸= 0 for some γ ⊆ C3.

Conclusion: Certificates are important.
A certificate is called regular if it has no other poles than F .

9 / 25
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The following example originates in [Picard, 1899]: Let Pt(u) = u3 + t, then

F =
x − y

z2 − Pt(x)Pt(y)

= ∂x
2Pt(x)

(x − y)(z2 − Pt(x)Pt(y))
+ ∂y

2Pt(y)

(x − y)(z2 − Pt(x)Pt(y))
+ ∂z

3(x2 + y2)z

(x − y)(z2 − Pt(x)Pt(y))
,

So one has 1 · F = ∂xC1 + ∂yC2 + ∂zC3, however:˛
γ
F dx dy dz ̸= 0 for some γ ⊆ C3.

Conclusion: Certificates are important.
A certificate is called regular if it has no other poles than F .
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Motivation and Introduction

Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
The model asks to minimize the Willmore energy

W (S) :=

ˆ
S
H2dA, (H is the mean curvature)

over orientable closed surfaces S ⊆ R3 with genus g , area A0 and volume V0.

[Willmore, 1965]: For a torus T = T (R, r) the Willmore energy is:

W (T ) =
π2R2

r
√
R2 − r2

⇝ minimal for R/r =
√
2.

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in R3 of genus g ≥ 1 the Willmore energy is minimal for T√
2.

W (S) is invariant under Möbius transformations ⇒ no uniqueness of the shape.

10 / 25

“Why do all humans have the same
biconcave shaped red blood cells?”
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[Yu, Chen, 2021]: All projections of the (Clifford) torus

The Clifford torus CT is defined as the following set in S3:

CT := {[cos u, sin u, cos v , sin v ]T/
√
2 : u, v ∈ [0, 2π]} ⊆ R4

The torus with minor radius 1 and major radius R > 1:

TR :=
{
[(R + cos v) cos u, (R + cos v) sin u, sin v ]T : u, v ∈ [0, 2π]

}
⊆ R3.

inv(x ,y ,z) is the inversion map about the unit sphere centered at (x , y , z) ∈ R3.

The set of all shapes of stereographic projections of CT to R3 is parameterized by

{inv(t,0,0)(T√
2) : t ∈ [0,

√
2− 1)}.
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W (inv(x ,y ,z)(T )) = W (T ) =

ˆ
T
H2dA = 2π2.

12 / 25



Introduction Creative Telescoping Biomembranes Conclusion

[Willmore, 1965] and [Marques, Neves, 2014]

[Marques, Neves, 2014]: Let Σ ⊆ S3 be an embedded closed surface of genus g ≥ 1.
Then W (Σ) ≥ 2π2 and the equality holds if and only if Σ is the Clifford torus up to

conformal transformations of S3.

13 / 25
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Uniquness with prescribed isoperimetric ratio

In Canham’s model, instead of A0 and V0 rather prescribe the isoperimetric ratio:

ι0 := π1/6
3
√
6V0√
A0

∈ (0, 1].

Question

Is the minimizer of W (S) with prescribed genus g and isoperimetric ratio ι0 unique?

Theorem (Yu, Chen, 22; Melczer, Mezzarobba, 22; Bostan, Y., 22)

The shape of the projection of the Clifford torus to R3 is uniquely determined by ι0.
Thus, if g = 1 and ι30 ∈ [3/(25/4

√
π), 1) then Canham’s model has a unique solution.
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Summary of [Yu, Chen, 22] and [Melczer, Mezzarobba, 22]

Let ι(S) := π1/6 3
√
6V (S)/

√
A(S) ∈ (0, 1], and τ := 3/(25/4

√
π) ≈ 0.712. Define

Iso : [0,
√
2− 1) → [τ, 1),

t 7→ ι(inv(t,0,0)(T√
2))

3

√
2π2A(t2) is the surface area and

√
2π2V (t2) is the volume of inv(t,0,0)(T√

2).

[Yu, Chen, 22]: Enough to show: Iso(t) is strictly increasing. Moreover,

V (t2)A(t2)

2π4

d

dt
ln(Iso(t)2) = 72t + 1932t3 + 31248t5 + · · · =:

∑
n≥0

ant
n

is a D-finite function. Enough to show: an > 0 for all n ≥ 0.

[Melczer, Mezzarobba, 22]: Rigorous asymptotics & error bounds: an > 0.
Therefore, Iso(t) is increasing.

15 / 25
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Closed form solution

Proposition (Bostan, Y., 2022)

The surface area
√
2π2A(t2) and volume

√
2π2V (t2) of inv(t,0,0)(T√

2) are given by

A(t) =
4
(
1− t2

)
(t2 − 6t + 1)2

· 2F1

[
−1

2 − 1
2

1
;

4t

(1− t)2

]
,

V (t) =
2 (1− t)3

(t2 − 6t + 1)3
· 2F1

[
−3

2 − 3
2

1
;

4t

(1− t)2

]
.

Corollary

The function Iso(t)2 = 36πV (t2)2

A(t2)3
is increasing on t ∈ (0,

√
2− 1).
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Proof of closed-form for V (t)

Let Q(u, v , r ; t) = 1 + 2t(
√
2 + r sin v) cos u + t2(2 + r2 + 2

√
2r sin v)t2. Then

√
2π2V (t2) =

ˆ 1

0

ˆ 2π

0

ˆ 2π

0

r
√
2 + r2 sin(v)

Q(u, v , r ; t)3
dudvdr

=

ˆ 1

0

˛
|x |=|y |=1

F (x , y , r ; t)dxdydr = 2 + 48t2 +
1269

2
t4 + · · · .

for some F (x , y , r ; t) ∈ Q(x , y , r , t,
√
2). Thus V (t) is a period function.
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F (x , y , r ; t)dxdydr = 2 + 48t2 +
1269

2
t4 + · · · .

for some F (x , y , r ; t) ∈ Q(x , y , r , t,
√
2). Thus V (t) is a period function.

First try: Use creative telescoping on the triple integral:

> FindCreativeTelescoping[F, {Der[x], Der[y], Der[r]}, Der[t]];

finds C1,C2,C3 ∈ Q(x , y , r , t) such that F = ∂xC1 + ∂yC2 + ∂rC3.
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1269

2
t4 + · · · .

for some F (x , y , r ; t) ∈ Q(x , y , r , t,
√
2). Thus V (t) is a period function.

Second try: Find a closed form for
¸
γ F dxdy and integrate dr “by hand”.

> FindCreativeTelescoping[F, {Der[x], Der[y]}, Der[t]];

finds L ∈ Q[r , t][∂t ] and C1,C2 ∈ Q(x , y , r , t) s.t. L · F = ∂xC1 + ∂yC2.

The common denominator of C1 and C2 is

denom(F ) · x · y · (1 + 2
√
2y − y2) · H(t, r).
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¸
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finds L ∈ Q[r , t][∂t ] and C1,C2 ∈ Q(x , y , r , t) s.t. L · F = ∂xC1 + ∂yC2.

The common denominator of C1 and C2 has

denom(F ) · x · y · (1 + 2
√
2y − y2) · H(t, r) ∩ γ = ∅.
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√
2π2V (t2) =

ˆ 1

0

˛
|x |=|y |=1

F (x , y , r ; t) dxdy︸ ︷︷ ︸
=:G(r ,t)

dr .

G (r , t) satisfies (P2(r , t)∂
2
t + P1(r , t)∂t + P0(r , t))G (r , t) = 0. Then:

G (r , t) = Q1 · 2F1
[
−3

2 − 3
2

1
;ϕ1

]
+ Q2 · 2F1

[
−1

2 − 3
2

1
;ϕ2

]
,

for some (explicit) Q1,Q2, ϕ1, ϕ2 ∈ Q(r , t). Then we also find:

ˆ s

0
G (r , t)dr =

2(s − t2)3

(2− s)t4 − 6t2 + 1
· 2F1

[
−3

2 − 3
2

1
;

4t2s

(1− t2(2− s))2

]
.

Finally:
√
2π2V (t2) =

´ 1
0 G (r , t)dr , so set s = 1 above.
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Iso is bijective

Proposition

Let

A(t) =
4
(
1− t2

)
(t2 − 6t + 1)2

· 2F1

[
−1

2 − 1
2

1
;

4t

(1− t)2

]
,

V (t) =
2 (1− t)3

(t2 − 6t + 1)3
· 2F1

[
−3

2 − 3
2

1
;

4t

(1− t)2

]
.

Then Iso(t)2 = 36πV (t2)2

A(t2)3
is increasing on t ∈ (0,

√
2− 1).
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Iso is bijective

We need to show that

z 7→
2F1
[
− 3

2
− 3

2
1

; 4z
(1−z)2

]2
2F1
[
− 1

2
− 1

2
1

; 4z
(1−z)2

]3 ·
(
1− z

1 + z

)3

is increasing on z ∈ [0, 3− 2
√
2).

Let x = 4z/ (1− z)2, then it remains to show that

h : x 7→
2F1
[
− 3

2
− 3

2
1

; x
]2

2F1
[
− 1

2
− 1

2
1

; x
]3 · (x + 1)−3/2

is increasing on [0, 1). Observe: h can be written as h(x) = g(x)2/f(x)3, where

g(x) = 2F1

[
−3

2 − 3
2

1
; x

]
· (x + 1)−3/2 and f (x) = 2F1

[
−1

2 − 1
2

1
; x

]
· (x + 1)−1/2

To show: g(x) is increasing and f(x) is decreasing on (0, 1).
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Iso is bijective

Proposition

Let a ≥ 0 and let wa : [0, 1] → R be defined by

wa(x) = 2F1

[
−a − a

1
; x

]
· (x + 1)−a.

Then wa is: decreasing if 0 < a < 1; increasing if a > 1; constant if a ∈ {0, 1}.

Clearly, g(x) = w3/2(x) and f(x) = w−1/2(x).
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Then wa is: decreasing if 0 < a < 1; increasing if a > 1; constant if a ∈ {0, 1}.

Proof.

w ′
a(x) · (x + 1)a+1

a · (a− 1) · (1− x)2a
= 2F1

[
a+ 1 a

2
; x

]
.

Clearly, g(x) = w3/2(x) and f(x) = w−1/2(x).
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The general case R > 1

Recall:

TR :=
{
[(R + cos v) cos u, (R + cos v) sin u, sin v ]T : u, v ∈ [0, 2π]

}
⊆ R3, and

inv(x ,y ,z) is the inversion about the unit sphere centered at (x , y , z).

Question

Are there closed formulas for the volume and surface area of inv(x ,y ,z)(TR) for any R?
Is IsoR(t) increasing in t for any R > 1?
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Computing the isoperimetric ratio

Theorem (Bostan, Yu, Y., 2023)

The surface area AR(t
2)Rπ2 and volume VR(t

2)Rπ2 of inv(t,0,0)(
TR

R2−1
) are given by

AR(t) =
4 (1− (R2 − 1)t2)

(1− 2(R2 + 1)t + (R2 − 1)2t2)2
· 2F1

[
−1

2 − 1
2

1
;

4t

(1− (R2 − 1)t)2

]
,

VR(t) =
2 (1− (R2 − 1)t)3

(1− 2(R2 + 1)t + (R2 − 1)2t2)2
·3F2

[
−3

2 − 3
2

3
2R2−4

+ 1

1 3
2R2−4

;
4t

(1− (R2 − 1)t)2

]
.

Corollary

For R > 1 the function Iso2R(t
2) = 36πVR(t

2)2

AR(t2)3
is increasing on t ∈ (0, (R + 1)−1).
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Theorem

For R > 1 the function Iso2R(t
2) = 36πVR(t

2)2

AR(t2)3
is increasing on t ∈ (0, (R + 1)−1), with

AR(t) =
4 (1− (R2 − 1)t2)

(1− 2(R2 + 1)t + (R2 − 1)2t2)2
· 2F1

[
−1

2 − 1
2

1
;

4t

(1− (R2 − 1)t)2

]
,

VR(t) =
2 (1− (R2 − 1)t)3

(1− 2(R2 + 1)t + (R2 − 1)2t2)2
·3F2

[
−3

2 − 3
2

3
2R2−4

+ 1

1 3
2R2−4

;
4t

(1− (R2 − 1)t)2

]
.

First perform the substitution x = 4t2/((1− (R2 − 1)t2)2. It remains to show that:

h(x) := 3F2

−3
2 − 3

2
3

2(R2−2)
+ 1

1 3
2(R2−2)

; x

2

· 2F1
[
−1

2 − 1
2

1
; x

]−3

· (1 + (R2 − 1) · x)−3/2

is increasing on x ∈ (0, 1) for all R > 1.
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and f (x) := 2F1

[
−1

2 − 1
2

1
; x

]
· (x + 1)−1/2.

We already saw: f(x) is decreasing. For g(x) it holds that:

4 · g’(x) · (1 + x)7/4 · (1 + (R2 − 1) · x)7/4

3 · (1− x)2 · (R2 − 1)
=:
∑
n≥0

un(R)x
n, and

un+1(R)/un(R) = (2n − 1)(2n + 1) pn+1(R)/(4(n + 2)(n + 1) pn(R)), u0(R) = 1, where

pn(R) := 4(R4 +4R2 − 4)n3 +6(R4 +R2 − 2)n2 + (2R4 − 13R2 +10)n− 3R2 +3 > 0.
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Summary and conclusion

Creative Telescoping is a powerful tool for dealing with Period functions.

Implemented versions of Creative Telescoping exist (both 2G and 4G).
They are useful in practice and can solve non-trivial problems.

The surface area and volume of any stereographic projection to R3 of the
Clifford torus can be expressed in terms of hypergeometric functions.

The Canham model in genus 1 has a unique solution when ι30 ∈
(

3
25/4

π− 1
2 , 1
)
.
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