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Motivating examples

m Recurrence for Apéry numbers:

n 2 2
k
Ar = <”> <” N ) satisfies  (n+1)3A, 1 = (170> + 17n +5)(2n + 1)A, — n®A, 1.

k k
k=0
m Generating function of moments:

; t] .

W

1 1
my, = / x". {’/m(lx satisfies Z mktk =c-2F1| 4
J0 k>0 3

m Surface area a projection to R3 of the Clifford torus:

/2”/2” (V2 +sinv) dudv
o Jo (1+2t(v/2+sinv)cosu+ t2(3 4 2v/2sinv))2
4+/272 (1 - t2) _% _ 4t
=————52f S
(t2—6t+1) 1 (1—1t)
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Algorithmic proofs

N

n 2 2
k
A, = <n> <n - > satisfies (n—|—1)3A,7+1 = (17n2+17n+5)(2n+1)A,7—n3A,,,1.

k k
k=0 \ ,
=ian,k

[van der Poorten, 1978]:

Neither Cohen nor I had been able to prove @ or @ in
the intervening 2 months. After a few days of fruitless

effort the specific problem was mentioned to Don Zagier
(Bonn), and with irritating speed he showed that indeed

the sequence {by,} satisfies the recurrence (4). This more or
less broke the dam and @ and @ were quickly conquered.
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[e] e} DO00C

Algorithmic proofs

n 2 2

k

An=) <Z> <”t > satisfies  (n+1)3A, 1 = (17n*4+17n+5)(2n+1)A,—n3A, ..
k=0

=ian,k
> Zeilberger(a, n, k, N); finds in < 0.02 seconds:
L= (n+2)>3N?>— (17n* +51n 4 39)(2n + 3)N + (n + 1)® and
C = (k> —3/2k —2n*> — 6n — 4)k*(16n +24)/(k —n—1)/(k — n — 2),

with the property that (N - a, x = a, 1.4 and K - a, k== ap k41):

() e () ()

Sum over k from 0 to n and conclude.




Introduction
0e0

Algorithmic proofs

1 13 2m?
my, = ./o X/ x(1— x) dx satisfies Z meth = 2Fy [ 23 : t] . W72r/3)3
=:fp(x) k20

> creative_telescoping(f,n::shift,x::diff); finds in < 0.1 seconds:
L=Bn+8)N—-(3n+4) and C(x)=3x(x—1),
with the property that (N - f,(x) = fry1(x)):
Lx" /X1 = x) = 8(C(x) - x"Yx(1 = X))
It follows that L - [ x"/x(1 — x)dx = 0 and hence (3n -+ 8)m,.1 = (3n+4)m,.
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Algorithmic proofs

Conclusion

/2”/27r (V2 +sinv) dudv
o Jo (1+2t(v/2+sinv)cosu+ t2(3 4 2v/2sinv))2
WER(1-£) [l -1 4
= o 2F1 2 2;—2 .
(t2—6t+1) 1 (1—1¢)
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Algorithmic proofs

Conclusion

yg 2(2v/2y — y? + 1)xdxdy
v (2vV22x y2 + 22t x%y — tx2y? — 22 2x — 2t2xy + 212ty + t X% — ty? — 2yx + t)2
_4V2r? (1- 12 -1 -1 4

F- ; .
(2—6t+1)7 > 'l 1 (1-t)
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y§ 2(2v/2y — y? + 1)xdxdy
v (2\/§ t2x y2 + 22t x2y — t x2y2 — 20/2 t2x — 2t2xy + 22ty + tx2 — t y2 — 2yx + t)2
AT ) s )
(12 — 6t +1)° I -
> FindCreativeTelescoping[F, {Der[x], Der[yl}, Der[tl]; finds in 10 seconds:

L=t(32 —1) (9t* — 262+ 1) (3 +1)° 92 + (3t + 1) (720¢% + 162¢° — 192¢* + 38¢% — 1) O,
+12¢ (3241° + 333t° 4 51¢* — 53° + 1), and
C1, G € Q(x,y, t) with the property that:

L-F= 6X(3_4—65,C§.
Therefore it follows that L - gﬁy F = 0. Solving Ly = 0 we find the right-hand side.
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Biomembranes Conclusion

Definitions and interactions

—————— P-recursive/D-finite

A power series f(t) € Q[t] is D-finite
if it satisfies a linear differential equation
with polynomial coefficients:

pa(t)F(£) + - + po(t)f(t) = 0.
This equation can be rewritten: L-f =0,
L= pn(t)0f + -+ po(t) € Q[t][0].
Let (a)y = - (a+1)---(a+n—1).

Then 2F1 |:a b; t} — ZI7>O (‘(923”(1’)7)'17 £n

C

satisfies

t(1—t)f"(t)+(c—(a+b+1)t)f' (t)—abf(t) = 0.
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Definitions and interactions

___————— P-recursive/D-finite

A sequence (up)n>0 is P-recursive, if it
satisfies a linear recurrence with polyno-
mial coefficients:

cr(nunyr + -+ -+ co(n)u, = 0.
Let (a)p=a-(a+1)---(a+n—1).

Then u, = (?Z’;'(.i)!” satisfies

(c+n)(n+1)upt1 — (a+ n)(b+ n)u, = 0.
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Conclusion

Definitions and interactions

~———— P-recursive/D-finite

\

A power series f(t) € Q[t] is called a
Period function if it is an integral of a
rational function in t and xg,

.., Xpn Over
a semi-algebraic set.
-1
/1 — t2x2
t)y=4 / 1
p( ) /O \/ 1 X2 ax
[ 1xd
=4 # ‘ )Ti)t/_)x_) and
Tl dsaey
(t—t)PP+(1—-t)0+t)-p=0
T 37T
t)=2mr— —t> - —t*
p(t) 5 3

André-Bombieri-Katz’s theorem: A Period function is a G-function [André, 1989].
Bombieri-Dwork conjecture: Any G-function is a Period function.
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—————— P-recursive/D-finite

\

Definitions and interactions

xiyj = Z

Biomembranes Conclusion

A power series f(t) € Q[t] = >, ukth is
called a Diagonal if there exists a rational
function

R = Z i X)X € Q(xd, - ., Xn)

i1yeensin>0
such that
f(t) = Diag(R) = Y cu..ut”.

k>0
Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k>0 is a multiple binomial sum.

<2n> ko 1
k>0 ! V1-—4t 4/25
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Definitions and interactions

—————— P-recursive/D-finite

\

\ /
nFn- /
e exp(t)
1 1 1
Diag =[x =
—X—y x1—x—1t/x

Biomembranes Conclusion

A power series f(t) € Q[t] = >, ukth is
called a Diagonal if there exists a rational
function

R = Z i X)X € Q(xd, - ., Xn)

i1yeensin>0
such that
f(t) = Diag(R) = Y cu..ut”.

k>0
Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k>0 is a multiple binomial sum.

1 ¢ dx
20 Jixjme X — X2 — t

NI=

=(1—4t)"
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Definitions and interactions

- /"’/’"/7777’7”"'E‘j'rﬁc\urswe/ D-finite | power series f(t) € Q[t] = >, uxth is

called a Diagonal if there exists a rational
function

i i
. R= E CipooinXy o X € Q(x1, .., Xn)
\ i1yeesin>0
| |'such that

£(£) = Ding(R) = 3 cur.ut.
k>0
Equivalently [Bostan, Lairez, Salvy 2017],
— o exp(t) (uk)k>0 is a multiple binomial sum.

Christol’s conjecture: A convergent D-finite power series in Z[t] is a Diagonal.
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Principle of Creative Telescoping

m Goal: Given a Period function or Diagonal, find an annihilating ODE.

Conclusion
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Principle of Creative Telescoping

m Goal: Given a Period function or Diagonal, find an annihilating ODE.
m More precisely: Given R € Q(xi,...,x5;t) and a closed cycle v C C”, find

L= po(t)07 + -+ po(t) € Q[t][@4], such that L- yﬁ Rdx = 0.
Y
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Principle of Creative Telescoping

m Goal: Given a Period function or Diagonal, find an annihilating ODE.
m More precisely: Given R € Q(xi,...,x5;t) and a closed cycle v C C”, find

L= po(t)07 + -+ po(t) € Q[t][@4], such that L- yﬁ Rdx = 0.
Y

= Note: [ O, Cdx = Jo, Cdx = J; Cdx = 0 for any rational function C € Q(x, t).
m So we need to find
L € Q[t][0¢], and Ci,....C, € Q(x1,...,Xn,t), such that
L-R=0qCi+-- 4 0x,Ch.

5/25
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Principle of Creative Telescoping

m Goal: Given a Period function or Diagonal, find an annihilating ODE.
m More precisely: Given R € Q(xi,...,x5;t) and a closed cycle v C C”, find

L= po(t)07 + -+ po(t) € Q[t][@4], such that L- yﬁ Rdx = 0.
v
= Note: [ Oy, Cdx = [, Cdx = [, Cdx =0 for any rational function C € Q(x, t).

m So we need to find

L € Q[t][0¢], and Ci, ..., Cn € Q(x1,...,Xn,t), such that
L-R=0,Ci+ -+ 0,Ch.

Principle of Creative Telescoping

n dkR n
Zpk(t)T =3,C+ - +08,0 = (Z pk(t)af) - §I§Rdx =0.
k=0 Y

k=0

The telescoper and certificates always exist and can be found algorithmically. 525
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The AImkvist—ZeiIberger algorithm [1990] “I could never resist a definite integral.”

Input: A hyperexponential function H(t,x), i.e. 9:H/H and 0xH/H € Q(t, x).
Output: A linear differential operator P(t,0:) € Q[t][0¢] and G(t,x) € Q(t,x), s.t.

P-H=08.G-H).

Algorithm: Let L = Q(t). For r=0,1,2,... do:
Compute a(t,x) = OxH/H and bi(t,x) = OKH/H for k =0,...,r.

Decide whether the (ordinary, linear, inhomogeneous, parametrized) diff. equation

OxG + a(t,x)G = Zr: c(t)b(t, x)
k=0

has a rational solution G € LL(x) for some ¢(t),...,c.(t) € L not all zero.

If found solution in (2), return P = >} _, c,OF and G; else increase r and repeat.

6/25
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Some history of Creative Telescoping

n
1 1
m Indefinite integration/summation and working examples Z k(k + 1) =1- nti
m Sums: [Bernoulli, Fasenmyer, Gosper,...] k=1
m Integrals: [Legendre, Ostrogradsky, Hermite, Picard, Manin, Griffiths, Feynman, ...]

()4 B [ P00, SR "I
QX Qi(x) . Qz(X)1 ./0 \/x(lx)(lxt)n/:l{ 1 Yt}

m Algorithmic Creative Telescoping (algorithmic definite summation&integration):

m 1G: brutal elimination: [Fasenmyer, 1947], [Zeilberger, 1990], [Takayama, 1990]

m 2G: rational solutions of linear ODEs: [Zeilberger, 1990], [Almkvist,Zeilberger, 1990],
[Chyzak, 2000], [Koutschan, 2010]

m 3G: 2G + linear algebra + bounds: [Apagodu, Zeilberger, 2005], [Koutschan 2010],
[Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]

m 4G: based on (Hermite- and generalized Griffiths-Dwork) reduction
[Bostan, Chen, Chyzak, Kauers, Koutschan, Li, Lairez, Salvy, Singer,...]

7/25
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“the certificate is not needed, its

Creatlve Telescoplng and de Rham cohomology existence and regularity are sufficient.”

m Let L=Q(t), f € L[xo,...,xn] =L[x] and v C C" a closed n-cycle.
m Denote by L[x,1/f], = {F € L[x,1/f] : F(Ax) = APF(x),VA € Q(t)}.
m We wish to compute the differential equation satisfied by

% F(t;xo,...,X,)dx, where F = a/f* € L[x,1/f]_n_1.
¥

8/25
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“the certificate is not needed, its

Creative Telescoplng and de Rham cohomology existence and regularity are sufficient.”

Let L = Q(t), f € L[xo,...,%a] =L[x] and v C C" a closed n-cycle.
Denote by L[x,1/f], = {F € L[x,1/f] : F(Ax) = APF(x),V\ € Q(t)}.
We wish to compute the differential equation satisfied by

%F(t;xo, .., Xp)dx, where F = a/f* € L[x,1/f]_n_1.
g

m Therefore we wish to find a non-trivial element in
HY" =1L[x,1/f]_n-1/Dr, where Dy = spang({0xC : C € L[x,1/f]_,})
m Generalized Griffiths-Dwork Reduction: F — [F], s.t. 957 Fdx =0 < [F]=0.

8/25
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“the certificate is not needed, its

Creative TeIescoplng and de Rham cohomology existence and regularity are sufficient.”

m Let L=Q(t), f € L[xo,...,xn] =L[x] and v C C" a closed n-cycle.
m Denote by L[x,1/f], = {F € L[x,1/f] : F(Ax) = APF(x),VA € Q(t)}.
m We wish to compute the differential equation satisfied by

%F(t;xo, .., Xp)dx, where F = a/f* € L[x,1/f]_n_1.
g

m Therefore we wish to find a non-trivial element in
HY" =1L[x,1/f]_n-1/Dr, where Dy = spang({0xC : C € L[x,1/f]_,})
m Generalized Griffiths-Dwork Reduction: F — [F], s.t. 957 Fdx =0 < [F]=0.

Theorem [Griffiths 1969, Bostan, Lairez, Salvy 2013, Lairez 2016]

Assume that L[x]/(0xf, ..., O,f) is finite-dimensional over L. Then H}" is finitely
generated over L. Moreover the Generalized Griffiths-Dwork Reduction can be used to
compute the (minimal regular) telescoper. 8/25
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the certlf/cate is not needed, its

Issues with singularities: non-regular certificates .sience and regularity are sufficient.”

m The following example originates in [Picard, 1899]: Let P;(u) = u® + t, then
X—Yy
= Pe(x)Pe(y)
2P:(x)
(x = y)(z2 = Pe(x)Pe(y))

F =

2P:(y) Lo 3(x2 + y?)z

to (x =y)(22 = Pe(x)Pe(y)) ~ 7 (x = y)(22 = Pe(x)Pi(y))’

9/25
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“the certlf/cate is not needed, its

Issues with singularities: non-regular certificates .sience and regularity are sufficient.”

m The following example originates in [Picard, 1899]: Let P;(u) = u® + t, then
X—Yy
= Pe(x)Pe(y)
2P:(x)
(x = y)(22 = Pe(x)Pe(y))

F =

2P:(y)

- (x =y)(22 = Pe(x)Pe(y)) ~ 7 (x = y)(22 = Pe(x)Pi(y))’

m Soone has1-F =0,C + 0, + 0,C3, however:

%Fdxdydz #0 for some v C C3.
5

9/25
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“the certificate is not needed, its

Issues with singularities: non-regular certificates .sience and regularity are sufficient.”

m The following example originates in [Picard, 1899]: Let P;(u) = u® + t, then
X—Yy
— Pe(x)Pe(y)
2P:(x)
(x = y)(22 = Pe(x)Pe(y))

F =

2P:(y)

- (x =y)(22 = Pe(x)Pe(y)) ~ 7 (x = y)(22 = Pe(x)Pi(y))’

m Soone has1-F =0,C + 0, + 0,C3, however:

%Fdxdydz #0 for some v C C3.
5

m Conclusion: Certificates are important.
A certificate is called regular if it has no other poles than F.
9/25
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“Why do all humans have the same

Motivation and Introduction biconcave shaped red blood cells?”

m Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
m The model asks to minimize the Willmore energy

W(S) = / H2dA, (H is the mean curvature)
s

over orientable closed surfaces S C R3 with genus g, area Ag and volume Vj.

10/25
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“Why do all humans have the same
biconcave shaped red blood cells?”

Motivation and Introduction

m Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
m The model asks to minimize the Willmore energy

W(S) = / H?dA, (H is the mean curvature) J§
s

over orientable closed surfaces S C R3 with genus g, area Ag and volume Vj.
m [Willmore, 1965]: For a torus T = T(R, r) the Willmore energy is:

W(T) = — = minimal for R/r = v/2.
r —r

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in R3 of genus g > 1 the Willmore energy is minimal for T V3
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“Why do all humans have the same
biconcave shaped red blood cells?”

Motivation and Introduction

m Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
m The model asks to minimize the Willmore energy

W(S) = / H?dA, (H is the mean curvature) J§
s

over orientable closed surfaces S C R3 with genus g, area Ag and volume Vj.
m [Willmore, 1965]: For a torus T = T(R, r) the Willmore energy is:

W(T) = — = minimal for R/r = v/2.
r —r

Theorem (Willmore 1964 (conjectured); Marques, Neves, 2014)

Across all closed surfaces in R3 of genus g > 1 the Willmore energy is minimal for T V3

m W(S) is invariant under Mobius transformations = no uniqueness of the shape.
10/25
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[Yu, Chen, 2021]: All projections of the (Clifford) torus

m The Clifford torus CT is defined as the following set in S3:
CT = {[cos u, sin u, cos v,sinv]T /v/2: u,v € [0,2n]} C R*
m The torus with minor radius 1 and major radius R > 1:

Tg = {[(R+cos v)cosu, (R + cosv)sinu,sinv]” :u,v e [0,277]} C RS

m inv(,, ) is the inversion map about the unit sphere centered at (x,y,z) € R3.

11/25



Biomembranes
0@0000000000000

[Yu, Chen, 2021]: All projections of the (Clifford) torus

m The Clifford torus CT is defined as the following set in S3:
CT = {[cos u, sin u, cos v,sinv]T /v/2: u,v € [0,2n]} C R*
m The torus with minor radius 1 and major radius R > 1:

Tg = {[(R+cos v)cosu, (R + cosv)sinu,sinv]” :u,v e [0,277]} C RS

m inv(,, ) is the inversion map about the unit sphere centered at (x,y,z) € R3.
m The set of all shapes of stereographic projections of CT to R3 is parameterized by

{inv(r.00)(Ty3) : t €0,V2—1)}

. I ' ' l 11/25
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W(inv(y,. ) (T)) = W(T) = / H2dA = 272,
T

12/25



[Willmore, 1965] and [Marques, Neves,

Biomembranes
000@00000000000

Then we have
m o

(17 r(f)=2LS Ssz(a-P beosu)dudp.
7
[}
After some computation we find, on writing b/a = ¢, that

(18) )=

E]
2¢eyT=
It is easy to see that 7(f)—> oo both as ¢—0 and as ¢ —1.

The minimum value of (f) occurs when ¢ = 1/y/2, when the valuc of
(f) is

It seems reasonable to interpret ¢(f) asameasure of the ,niceness® of
the shape of the surface /(S), and to argue heuristically that a small value
of z(f) corresponds to a simple shape for f(S). This suggests that (13)
with b/a = 1/2 gives the nicest shape for an embedded torus. However,
whether or not 7(7) =z remains an open question. The problem for
surfaces of genus p =2 remains unsolved.

THE BLOG SCIENCE

Math Finds the Best Doughnut

After a 47-year search, mathematicians Fernando C. Marques and André Neves
have found the best doughnut, or at least the best geometric shape for a
doughnut.

By Frank Morgan, Contributor

Atwell Professor of Mathematics, Emeritus, Williams College; Editor-in-Chief, Notices of the American Mathematical Society

[Marques, Neves, 2014]: Let ¥ C S® be an embedded closed surface of genus g > 1.
Then W(X) > 272 and the equality holds if and only if ¥ is the Clifford torus up to
conformal transformations of S3.

13/25
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Uniquness with prescribed isoperimetric ratio

m In Canham’s model, instead of Ag and Vj rather prescribe the isoperimetric ratio:
_ _16V6%
0 =T ——— & (0, 1]
VAo

Is the minimizer of W(S) with prescribed genus g and isoperimetric ratio ¢ unique?

L

14/25
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Uniquness with prescribed isoperimetric ratio

m In Canham’s model, instead of Ag and Vo rather prescribe the isoperimetric ratio:
1/6 V (0 1]
\ﬁ

Lo

Question

Is the minimizer of W(S) with prescribed genus g and isoperimetric ratio ¢ unique?

Theorem (Yu, Chen, 22: Melczer, Mezzarobba, 22; Bostan, Y., 22)

The shape of the projection of the Clifford torus to R3? is uniquely determined by 1g.
Thus, ifg =1 and i € [3/( (25/4,/7),1) then Canham’s model has a unique solution.

14/25
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Summary of [Yu, Chen, 22| and [Melczer, Mezzarobba, 22|

m Let (S) = 7'/03/6V(S)/\/A(S) € (0,1], and T == 3/(25/*\/) ~ 0.712. Define
Iso: [0,v2 — 1) — [r, 1),
t— L(inV(mo’O)(T\/i))?’
m /272A(t?) is the surface area and V272 V/(t?) is the volume of inv(t.0,0)(T3)-

15/25
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Summary of [Yu, Chen, 22| and [Melczer, Mezzarobba, 22|

m Let ((S) =70 3/6V(S)/\/A(S) € (0,1], and T := 3/(2%/*\/7) ~ 0.712. Define
Iso: [0,v2 — 1) — [r, 1),
t— L(inV(mo’())( T\/i))3

m V272 A(t?) is the surface area and /272 V/(t?) is the volume of inv(t.0,0)(T3)-
m [Yu, Chen, 22]: Enough to show: Iso(t) is strictly increasing. Moreover,

V(t?)A(t?) d 2 3 5
——————In(Iso(t)") = 72t 4+ 1932t 1248t 4 - .- = at”
5d A n(Iso(t)) + 1932t + 31248t + n§>oa

is a D-finite function. Enough to show: a, > 0 for all n > 0.

15/25
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Summary of [Yu, Chen, 22| and [Melczer, Mezzarobba, 22|

m Let ((S) =70 3/6V(S)/\/A(S) € (0,1], and T := 3/(2%/*\/7) ~ 0.712. Define
Iso: [0,v2 — 1) — [r, 1),
t— L(inV(mo’())( T\/i)):))

m V272 A(t?) is the surface area and /272 V/(t?) is the volume of inv(t.0,0)(T3)-
m [Yu, Chen, 22]: Enough to show: Iso(t) is strictly increasing. Moreover,
V(t*)A(t*) d 2 3 5
————~>—In(lso(t)°) = 72t + 1932t 1248t 4 - - - = at"
5d A n(Iso(t)) + 1932t + 31248t + ng;)a
is a D-finite function. Enough to show: a, > 0 for all n > 0.

m [Melczer, Mezzarobba, 22]: Rigorous asymptotics & error bounds: a, > 0.
Therefore, Iso(t) is increasing.

15/25
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Closed form solution

Proposition (Bostan, Y., 2022)
The surface area /212 A(t?) and volume v/27?V/(t?) of inv (¢ 0.0)(T,/3) are given by

4(1- 1)

1 _l. 4t
A‘f):m”ﬁ[ 1 ﬁ]

Il WY b -l PR
V(t)_(t2—6t+1)3 ZFI{ 1 ]

Corollary

The function Iso(t)? = 3677% is increasing on t € (0,v/2 — 1).
16 /25
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Proof of closed-form for V/(t)

m Let Q(u,v,r; t) =1+ 2t(\/§ + rsinv)cosu + t2(2 +r2 4+ 2v/2rsin v)t2. Then

27 27w
V2r?V(t?) = / / V24 sin(v )d dvdr
Q(u,v,r;t)3
1269

/ §£ F(x,y,r; t)dxdydr =2 +48t2 + ——t* + ...
Ix|=ly|=1 2

for some F(x,y,r; t) € Q(x,y,r,t,v/2). Thus V(t) is a period function.

17/25



Biomembranes
0000000@0000000

Proof of closed-form for V/(t)

m Let Q(u,v,r; t) =1+ 2t(\@ + rsinv)cosu + t2(2 + r2 4+ 2v/2rsin v)t2. Then

2 27
Va2Vt z)_/ / Md dvdr
Q(u,v,r;t)3
1269

/515 F(x,y,r; t)dxdydr =24 48t + ———t* + ... .
Ix=ly|=1 2
for some F(x,y,r; t) € Q(x,y,r,t,v/2). Thus V(t) is a period function.
m First try: Use creative telescoping on the triple integral:
> FindCreativeTelescoping[F, {Der[x], Der[y], Der[rl}, Der[tl];

finds Gy, G, G5 € Q(X,y, r, t) such that F = 0,C; + 8yC2 + 0,Cs.
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Proof of closed-form for V/(t)

m Let Q(u,v,r; t) =14 2t(v/2+ rsinv)cosu + t?(2 + r?> + 2/2rsin v)t2. Then

v = [ [ [

Q(u,v,r;t)3

12
/yg F(x,y,r; t)dxdydr—2—|—48t+ 269 N
Ix|=ly|=1

for some F(x,y,r; t) € Q(x,y,r,t,+/2). Thus V(t) is a period function.
m Second try: Find a closed form for 567 F dxdy and integrate dr "by hand”.

> FindCreativeTelescoping[F, {Der[x], Der([yl}, Der[t]];

finds L € Q[r, t][@t] and ¢, G € Q(X,y, r, t) st. L-F=0,C + 8yC2.
m The common denominator of C; and (& is

denom(F) - x -y - (14 2v2y — y?) - H(t,r).
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Proof of closed-form for V/(t)

m Let Q(u,v,r; t) =14 2t(v/2+ rsinv)cosu + t?(2 + r?> + 2/2rsin v)t2. Then

v = [ [ [

Q(u,v,r;t)3

12
/yg F(x,y,r; t)dxdydr—2—|—48t+ 269 N
Ix|=ly|=1

for some F(x,y,r; t) € Q(x,y,r,t,+/2). Thus V(t) is a period function.
m Second try: Find a closed form for 567 F dxdy and integrate dr "by hand”.

> FindCreativeTelescoping[F, {Der[x], Der([yl}, Der[t]];

finds L € Q[r, t][@t] and ¢, G € Q(X,y, r, t) st. L-F=0,C + 8yC2.
m The common denominator of C; and (> has

denom(F)-x-y-(1+2V2y —y?) - H(t,r)N~y =0.
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V22 V(t / yg F(x,y,r; t)dxdydr.
Ix|=ly|=1
=:G(r,t)

G(r, t) satisfies (Pa(r, t)0? + P1(r, t)0; + Po(r,t))G(r,t) = 0. Then:

3

3 _3 _1
G(rat):Ql’2F1|: 21 2;¢1}+Q2'2F1[ 21

for some (explicit) Q1, Q2, ¢1, P2 € Q(r, t). Then we also find:
s 2(s — t2)3 -3 _3 4135
G(r, t)dr = oF | 2% :
/0 (nOdr=G e —er+1 27| "1 Taoee-9)y

Finally: v272V(t?) = fo G(r,t)dr, so set s =1 above.
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Iso is bijective

Let

Alt) = (2 — 6t +1)°

2(1—1)® _
(t2—6t+1)3.2F1[ I

Then Iso(t)? = 36w A((tz))j is increasing on t € (0,v/2 — 1).

V(t) =

19/25
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Iso is bijective

We need to show that

2F1[_ 1 ;(1izz)2]2 ' <1—z>3
2,__1[— 3 \1+z

is increasing on z € [0,3 — 2v/2).

Nlw
Nlw

Z —

Nl=
N[
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Iso is bijective

We need to show that

is increasing on [0, 1).
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Iso is bijective

We need to show that

(
h: x — 2F1[_§1_f;x}3 S(x+ 1)_3/2
2F1[_51_§;X}

is increasing on [0,1). Observe: h can be written as h(x) = g(x)?/f(x)*, where
11

3 _3 1 1
21 2;x}'(x+1)3/2 and f(x)ngl[ 21 2;X:|'(X+1)1/2

g(x) =2F1[

To show: g(x) is increasing and f(x) is decreasing on (0, 1).
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Iso is bijective

Let a >0 and let w, : [0,1] — R be defined by
wa(x) = 2F1 [—a 1_ a;X] (x+ 1)

Then w, is: decreasing if 0 < a < 1, increasing if a > 1, constant if a € {0,1}.

Clearly, g(x) = wz/>(x) and f(x) = w_y /5(x).
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Iso is bijective

Let a> 0 and let w, : [0,1] — R be defined by

wa(x) = 2F1 [_a 1_ a;X] S(x+1)7

Then w, is: decreasing if 0 < a < 1, increasing if a > 1; constant if a € {0,1}.

wh(x) - (x +1)3*1 _, 1[a+1 a ]

a-(a—1) (1-x)22 2 -

Clearly, g(x) = wz/>(x) and f(x) = w_y 5(x).
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The general case R > 1

Recall:
Tr = {[(R+ cos v) cos u, (R + cos v)sinu,sinv]” : u, v € [0,27r]} CR3 and

inv(y , z) is the inversion about the unit sphere centered at (x,y,2).

Question

Are there closed formulas for the volume and surface area of inv(,, ,)(Tg) for any R?
Is Isog(t) increasing in t for any R > 17
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Computing the isoperimetric ratio

Theorem (Bostan, Yu, Y., 2023)

The surface area Ag(t?)R7? and volume Vg(t?)R7? of 1nV(t00)(R2 1) are given by

B 4(1— (R —1)¢%) -3 —3. At
Ag(t) = (1—2(R? + 1)t + (R? — 1)2t2)2 '2F1{ 2 1 % (1-(R2- l)t)z]’
2(1— (R2—1)t)3 — = el 4t
Ve(t) = T a(re D)+ (R2 - 1R [ e 22:§R_4 s (1 - (R?=1)t)?
Corollary

Vir(t?)2

For R > 1 the function Iso%(t?) = 367 . (2)3

is increasing on t € (0,(R+ 1)~

Y.
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Theorem

Vr(t2)?

R(t2)3

For R > 1 the function Iso%(t?) = 367 is increasing on t € (0, (R + 1)), with

B 4(1— (R> — 1)?) -3 —3. At
AR = TR 1 1)t 1 (R - 1)200)2 'zFl[ 1R 1)t)2]’
B 2(1— (R? - 1)t)3 -3 “imatl 4t
Vr(t) = (1—2(R? + 1)t + (R? — 1)2t2)2 5 [ : 1 22:§R4 . (1—(R?=1)1)?

First perform the substitution x = 4t?/((1 — (R? — 1)t?)2. It remains to show that:

2
3 3 3
-3 -2 =41 -1 _
h(x) = 3F> 2 2 2(3R2 2) P X ~2F1[ 21

2(R2—2)

N

-3
;X:| -(1—%—(:‘?2—1)-x)_3/2

is increasing on x € (0,1) for all R > 1.

] |
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2
P X '2F1[

N|=
N[—=

3 3 3
T2 T2 2(RP2) +1

-3
h(x) = 3F ;x] (14 (R?—1)-x)73/?

2(R?=2)

is increasing on x € (0,1) for all R > 1.
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-3 -3 ;35 +1 i ~1 _1 778
h(x) = 3F2 2(3R_2) X -2F1[ 21 2;x] (14 (R?P—1)-x)73/?
G

is increasing on x € (0,1) for all R > 1. Note that h(x) = g(x)?/f(x)*, where

3 3 3
333 -1
3F2[ 22 ARD) ;x]

3
1 2(R2-2)

1+ X)3/4 . (1 + (R2 _ 1) . x)3/4

1

1
2

1
g(x) = ( and f(x) = 25{ 2 ;X] (x4 1)7Y2
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-3 -3 3 41 2 1 _1 713
h(x) =3k | 2 22827 -2F1[ 2, 2;x] S(1+(R*—1)-x)7%2

3
1 smi=y

is increasing on x € (0,1) for all R > 1. Note that h(x) = g(x)?/f(x)*, where

3 3 3
2 2 7+
2 2 R2_ .
F 2( 2) T X

! 2(R2-2) — _

1

1
2

g(x) =

1
and f(x):2F1{ 2;X] ~(X-+-1)71/%

(1+x)34 (11 (RZ—1) x)3/+

We already saw: f(x) is decreasing.
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2

3 3 3 -3
—2 —2 =41 1 _ 1
h(x) = 3F> 2 2 2(3R2_2) x| oFy [ 2 2 ;X:| (14 (R2 -1) -x)_3/2
(=) 1

is increasing on x € (0,1) for all R > 1. Note that h(x) = g(x)?/f(x)*, where

3 3 3
R S - A
2 2 R2 — .
F- 2(3 2) P X

G -3 —3 )
g(x): A0 (11 (RE_1) )P/ and f(x): 2/—_1{ ) ,X} (x+1)" /=,
We already saw: f(x) is decreasing. For g(x) it holds that:
4-g'(x) - (1+x)7* (14 (R~ 1)-x)"/* 3
3 (1-x2-(RR—1) = 2 un(R)", and

n>0
un+1(R)/un(R) = (20 —1)(2n + 1) pny1(R)/(4(n + 2)(n + 1) pa(R)). uo(R) = 1, where
pn(R) == 4(R* +4R?* — 4)n* +-6(R* + R?> — 2)n* + (2R* — 13R? + 10)n — 3R> +3 > 0.
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Summary and conclusion

m Creative Telescoping is a powerful tool for dealing with Period functions.

Implemented versions of Creative Telescoping exist (both 2G and 4G).
They are useful in practice and can solve non-trivial problems.

m The surface area and volume of any stereographic projection to R? of the
Clifford torus can be expressed in terms of hypergeometric functions.

: . . 1
m The Canham model in genus 1 has a unique solution when Lg € (25—3/47r_2,1).
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