
(q-)holonomic sequences Main theorem Sketch of the proof Summary

Computing the N-th term of a q-holonomic sequence1,2

Sergey Yurkevich

Inria and University of Vienna

Friday 26th November, 2021

1Joint work with Alin Bostan, arxiv.org/abs/2012.08656
2Slides available at homepage.univie.ac.at/sergey.yurkevich/data/Nthqhol slides.pdf

1 / 11

https://arxiv.org/abs/2012.08656
https://homepage.univie.ac.at/sergey.yurkevich/data/Nthqhol_slides.pdf


(q-)holonomic sequences Main theorem Sketch of the proof Summary

Problem statement

Given a sequence (un)n≥0 and N ∈ N, we want to compute uN as fast as possible.

un lie in some field K.
The sequence is given by some recurrence relation and initial conditions.
By “fast” we mean with as few arithmetic operations in K as possible.
Tremendous number of applications:

Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
Computations on real numbers (e.g., constants approximation [Chudnovsky2, 1987])
Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
etc.

2 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Problem statement

Given a sequence (un)n≥0 and N ∈ N, we want to compute uN as fast as possible.
un lie in some field K.

The sequence is given by some recurrence relation and initial conditions.
By “fast” we mean with as few arithmetic operations in K as possible.
Tremendous number of applications:

Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
Computations on real numbers (e.g., constants approximation [Chudnovsky2, 1987])
Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
etc.

2 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Problem statement

Given a sequence (un)n≥0 and N ∈ N, we want to compute uN as fast as possible.
un lie in some field K.
The sequence is given by some recurrence relation and initial conditions.

By “fast” we mean with as few arithmetic operations in K as possible.
Tremendous number of applications:

Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
Computations on real numbers (e.g., constants approximation [Chudnovsky2, 1987])
Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
etc.

2 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Problem statement

Given a sequence (un)n≥0 and N ∈ N, we want to compute uN as fast as possible.
un lie in some field K.
The sequence is given by some recurrence relation and initial conditions.
By “fast” we mean with as few arithmetic operations in K as possible.

Tremendous number of applications:
Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
Computations on real numbers (e.g., constants approximation [Chudnovsky2, 1987])
Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
etc.

2 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Problem statement

Given a sequence (un)n≥0 and N ∈ N, we want to compute uN as fast as possible.
un lie in some field K.
The sequence is given by some recurrence relation and initial conditions.
By “fast” we mean with as few arithmetic operations in K as possible.
Tremendous number of applications:

Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
Computations on real numbers (e.g., constants approximation [Chudnovsky2, 1987])
Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
etc.

2 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Holonomic (aka P-recursive) sequences

A sequence (un)n≥0 ∈ K is called holonomic if it satisfies a linear recurrence
relation with polynomial coefficients:

cr (n)un+r + · · ·+ c0(n)un = 0 n ≥ 0.

Examples:
un = qn satisfies un+1 − qun = 0;
un = n! satisfies un+1 − (n + 1)un = 0;
un =

∑n
k=0

(n
k
)2(n+k

k
)

satisfies (n +2)2un+2−(11n2 +33n +25)un+1−(n +1)2un = 0.

Given N ∈ N, one can compute uN in Õ(
√

N) arithmetic operations
[Strassen, 1977], [Chudnovsky2, 1988]. Naive: O(N)

3 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Holonomic (aka P-recursive) sequences

A sequence (un)n≥0 ∈ K is called holonomic if it satisfies a linear recurrence
relation with polynomial coefficients:

cr (n)un+r + · · ·+ c0(n)un = 0 n ≥ 0.

Examples:
un = qn satisfies un+1 − qun = 0;
un = n! satisfies un+1 − (n + 1)un = 0;
un =

∑n
k=0

(n
k
)2(n+k

k
)

satisfies (n +2)2un+2−(11n2 +33n +25)un+1−(n +1)2un = 0.

Given N ∈ N, one can compute uN in Õ(
√

N) arithmetic operations
[Strassen, 1977], [Chudnovsky2, 1988]. Naive: O(N)

3 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Holonomic (aka P-recursive) sequences

A sequence (un)n≥0 ∈ K is called holonomic if it satisfies a linear recurrence
relation with polynomial coefficients:

cr (n)un+r + · · ·+ c0(n)un = 0 n ≥ 0.

Examples:
un = qn satisfies un+1 − qun = 0;
un = n! satisfies un+1 − (n + 1)un = 0;
un =

∑n
k=0

(n
k
)2(n+k

k
)

satisfies (n +2)2un+2−(11n2 +33n +25)un+1−(n +1)2un = 0.

Given N ∈ N, one can compute uN in Õ(
√

N) arithmetic operations
[Strassen, 1977], [Chudnovsky2, 1988]. Naive: O(N)

3 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

q-holonomic sequences

A sequence (un)n≥0 ∈ K is called q-holonomic if for some q ∈ K it satisfies a
linear q-recurrence relation with polynomial coefficients:

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0 n ≥ 0.

Examples:
un = qn satisfies un+1 − qun = 0;
un = [n]q! = (1 + q) · · · (1 + q + · · ·+ qn−1) satisfies (q− 1)un+1− (qn+1− 1)un = 0;
un =

∑n
k=0 2k2 satisfies un+2 − (22n+1 + 1)un+1 + 22n−1un = 0.

Given N ∈ N, one can compute uN in Õ(
√

N) arithmetic operations
[Bostan, Y., 2020]. Naive: O(N)

4 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

q-holonomic sequences

A sequence (un)n≥0 ∈ K is called q-holonomic if for some q ∈ K it satisfies a
linear q-recurrence relation with polynomial coefficients:

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0 n ≥ 0.

Examples:
un = qn satisfies un+1 − qun = 0;
un = [n]q! = (1 + q) · · · (1 + q + · · ·+ qn−1) satisfies (q− 1)un+1− (qn+1− 1)un = 0;
un =

∑n
k=0 2k2 satisfies un+2 − (22n+1 + 1)un+1 + 22n−1un = 0.

Given N ∈ N, one can compute uN in Õ(
√

N) arithmetic operations
[Bostan, Y., 2020]. Naive: O(N)

4 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

q-holonomic sequences

A sequence (un)n≥0 ∈ K is called q-holonomic if for some q ∈ K it satisfies a
linear q-recurrence relation with polynomial coefficients:

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0 n ≥ 0.

Examples:
un = qn satisfies un+1 − qun = 0;
un = [n]q! = (1 + q) · · · (1 + q + · · ·+ qn−1) satisfies (q− 1)un+1− (qn+1− 1)un = 0;
un =

∑n
k=0 2k2 satisfies un+2 − (22n+1 + 1)un+1 + 22n−1un = 0.

Given N ∈ N, one can compute uN in Õ(
√

N) arithmetic operations
[Bostan, Y., 2020]. Naive: O(N)

4 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

(Arithmetic) complexity basics

Arithmetic complexity means we count base operations (+,−,×,÷) in K at unit
cost. Hence, in practice K is a finite field.

O(·) stands for the big-Oh notation and Õ(·) is used to hide polylogarithmic
factors in the argument.
M(d) is the cost of multiplication of two polynomials in K[x ] of degree d . It is
known that M(d) = O(d log d log log d) = Õ(d). (Using FFT) Naive: O(d2)
Given P(x) ∈ K[x ] of degree d , one can evaluate P(x) at q, q2, . . . , qd ∈ K
simultaneously in complexity O(M(d)). (Using Bluestein’s trick) Naive: O(d2)
Two matrices in Kn×n can be multiplied in complexity O(nω), where the best
current bound is ω < 2.3729. Naive: O(n3)

5 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

(Arithmetic) complexity basics

Arithmetic complexity means we count base operations (+,−,×,÷) in K at unit
cost. Hence, in practice K is a finite field.
O(·) stands for the big-Oh notation and Õ(·) is used to hide polylogarithmic
factors in the argument.

M(d) is the cost of multiplication of two polynomials in K[x ] of degree d . It is
known that M(d) = O(d log d log log d) = Õ(d). (Using FFT) Naive: O(d2)
Given P(x) ∈ K[x ] of degree d , one can evaluate P(x) at q, q2, . . . , qd ∈ K
simultaneously in complexity O(M(d)). (Using Bluestein’s trick) Naive: O(d2)
Two matrices in Kn×n can be multiplied in complexity O(nω), where the best
current bound is ω < 2.3729. Naive: O(n3)

5 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

(Arithmetic) complexity basics

Arithmetic complexity means we count base operations (+,−,×,÷) in K at unit
cost. Hence, in practice K is a finite field.
O(·) stands for the big-Oh notation and Õ(·) is used to hide polylogarithmic
factors in the argument.
M(d) is the cost of multiplication of two polynomials in K[x ] of degree d . It is
known that M(d) = O(d log d log log d) = Õ(d). (Using FFT) Naive: O(d2)
Given P(x) ∈ K[x ] of degree d , one can evaluate P(x) at q, q2, . . . , qd ∈ K
simultaneously in complexity O(M(d)). (Using Bluestein’s trick) Naive: O(d2)
Two matrices in Kn×n can be multiplied in complexity O(nω), where the best
current bound is ω < 2.3729. Naive: O(n3)

5 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Main theorem

Theorem (Bostan, Y., 2020)

Let q ∈ K \ {1} and N ∈ N. Let (un)n≥0 be a q-holonomic sequence satisfying the
recurrence

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0 n ≥ 0,

and assume that cr (q, qk) is nonzero for k = 0, . . . , N. Then, uN can be computed in
O(M(

√
N)) = Õ(

√
N) operations in K. Naive: O(N)

Theorem (Bostan, Y. 2020)

Under the assumptions of the theorem above, let d ≥ 1 be the maximum of the
degrees of c0(q, y), . . . , cr (q, y). Then, for any N > d, the term uN can be computed
in O(rω

√
Nd + r2 M(

√
Nd)) operations in K.

6 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Main theorem

Theorem (Bostan, Y., 2020)

Let q ∈ K \ {1} and N ∈ N. Let (un)n≥0 be a q-holonomic sequence satisfying the
recurrence

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0 n ≥ 0,

and assume that cr (q, qk) is nonzero for k = 0, . . . , N. Then, uN can be computed in
O(M(

√
N)) = Õ(

√
N) operations in K. Naive: O(N)

Theorem (Bostan, Y. 2020)

Under the assumptions of the theorem above, let d ≥ 1 be the maximum of the
degrees of c0(q, y), . . . , cr (q, y). Then, for any N > d, the term uN can be computed
in O(rω

√
Nd + r2 M(

√
Nd)) operations in K.

6 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Timings
Computing the N-th term of un =

∑n
k=0 qk2 ∈ Fp, where p = 250 + 55 is prime and

q ∈ Fp randomly chosen.

210 214 218 222 226 230 234 238

2−6

2−4

2−2

20

22

24

26

28

N

Ti
m

e
in

se
co

nd
s

naive: Õ(N)
new: Õ(

√
N)

7 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

An application: evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.

Generically, Horner’s rule needs O(deg P) operations.
Our results imply that one can do better for large families of polynomials.
[Nogneng, Schost, 2018]: The truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN2

can be evaluated at q ∈ K in Õ(
√

N) arithmetic operations.
Also follows from our result: ϑN(q) = uN , where un =

∑n
k=0 qk2 is q-holonomic.

Same complexity and reasoning for
∏N

i=0(x − ai ), or q-Hermite polynomials,
or
∏∞

i=1(1− x i )3 mod xn, etc.

8 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

An application: evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.
Generically, Horner’s rule needs O(deg P) operations.

Our results imply that one can do better for large families of polynomials.
[Nogneng, Schost, 2018]: The truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN2

can be evaluated at q ∈ K in Õ(
√

N) arithmetic operations.
Also follows from our result: ϑN(q) = uN , where un =

∑n
k=0 qk2 is q-holonomic.

Same complexity and reasoning for
∏N

i=0(x − ai ), or q-Hermite polynomials,
or
∏∞

i=1(1− x i )3 mod xn, etc.

8 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

An application: evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.
Generically, Horner’s rule needs O(deg P) operations.
Our results imply that one can do better for large families of polynomials.

[Nogneng, Schost, 2018]: The truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN2

can be evaluated at q ∈ K in Õ(
√

N) arithmetic operations.
Also follows from our result: ϑN(q) = uN , where un =

∑n
k=0 qk2 is q-holonomic.

Same complexity and reasoning for
∏N

i=0(x − ai ), or q-Hermite polynomials,
or
∏∞

i=1(1− x i )3 mod xn, etc.

8 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

An application: evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.
Generically, Horner’s rule needs O(deg P) operations.
Our results imply that one can do better for large families of polynomials.
[Nogneng, Schost, 2018]: The truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN2

can be evaluated at q ∈ K in Õ(
√

N) arithmetic operations.

Also follows from our result: ϑN(q) = uN , where un =
∑n

k=0 qk2 is q-holonomic.
Same complexity and reasoning for

∏N
i=0(x − ai ), or q-Hermite polynomials,

or
∏∞

i=1(1− x i )3 mod xn, etc.

8 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

An application: evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.
Generically, Horner’s rule needs O(deg P) operations.
Our results imply that one can do better for large families of polynomials.
[Nogneng, Schost, 2018]: The truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN2

can be evaluated at q ∈ K in Õ(
√

N) arithmetic operations.
Also follows from our result: ϑN(q) = uN , where un =

∑n
k=0 qk2 is q-holonomic.

Same complexity and reasoning for
∏N

i=0(x − ai ), or q-Hermite polynomials,
or
∏∞

i=1(1− x i )3 mod xn, etc.

8 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

An application: evaluation of polynomials

Task: Given a polynomial P(x) ∈ K[x ] and q ∈ K, deduce P(q) ∈ K fast.
Generically, Horner’s rule needs O(deg P) operations.
Our results imply that one can do better for large families of polynomials.
[Nogneng, Schost, 2018]: The truncated Jacobi theta function

ϑN(x) := 1 + x + x4 + x9 + · · ·+ xN2

can be evaluated at q ∈ K in Õ(
√

N) arithmetic operations.
Also follows from our result: ϑN(q) = uN , where un =

∑n
k=0 qk2 is q-holonomic.

Same complexity and reasoning for
∏N

i=0(x − ai ), or q-Hermite polynomials,
or
∏∞

i=1(1− x i )3 mod xn, etc.

8 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Idea of the proof
Note that

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0

can be translated into a first-order matrix-vector recurrence


un+r

...
un+1

 =


− cr−1(q,qn)

cr (q,qn) · · · − c1(q,qn)
cr (q,qn) − c0(q,qn)

cr (q,qn)
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

×


un+r−1
...

un

 =: M(qn)×


un+r−1

...
un

 .

Hence, uN can be easily expressed in terms of the matrix q-factorial

M(qN−1) · · ·M(q)M(1) ∈ Kr×r .

⇒ New problem: Given M(x) ∈ K[x ]r×r , compute M(qN−1) · · ·M(q)M(1) fast.

9 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Idea of the proof
Note that

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0

can be translated into a first-order matrix-vector recurrence


un+r

...
un+1

 =


− cr−1(q,qn)

cr (q,qn) · · · − c1(q,qn)
cr (q,qn) − c0(q,qn)

cr (q,qn)
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

×


un+r−1
...

un

 =: M(qn)×


un+r−1

...
un

 .

Hence, uN can be easily expressed in terms of the matrix q-factorial

M(qN−1) · · ·M(q)M(1) ∈ Kr×r .

⇒ New problem: Given M(x) ∈ K[x ]r×r , compute M(qN−1) · · ·M(q)M(1) fast.

9 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Idea of the proof
Note that

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0

can be translated into a first-order matrix-vector recurrence


un+r

...
un+1

 =


− cr−1(q,qn)

cr (q,qn) · · · − c1(q,qn)
cr (q,qn) − c0(q,qn)

cr (q,qn)
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

×


un+r−1
...

un

 =: M(qn)×


un+r−1

...
un

 .

Hence, uN can be easily expressed in terms of the matrix q-factorial

M(qN−1) · · ·M(q)M(1) ∈ Kr×r .

⇒ New problem: Given M(x) ∈ K[x ]r×r , compute M(qN−1) · · ·M(q)M(1) fast.
9 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))

(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))

(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x).

Divide-and-Conquer ⇒ O(M(s))
(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)

simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))
(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))

(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1.

Bluestein’s trick ⇒ O(M(s))
(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))

(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))

(3) Return the product P(Qs−1) · · ·P(Q)P(1).

O(s)

10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Matrix q-factorial with baby-step/giant-step
Task: Given M(x) ∈ K[x ]r×r and N ∈ N, compute

M(qN−1) · · ·M(q)M(1)

in O(M(
√

N)) arithmetic operations.

Note: The naive algorithm has O(N) complexity. Assume that N = s2 for s ∈ N.

Main algorithm (matrix q-factorial) N = s2

(1) (Baby-step) Compute q, q2, . . . , qs−1; deduce the coefficients of the polynomial
matrix P(x) := M(qs−1x) · · ·M(qx)M(x). Divide-and-Conquer ⇒ O(M(s))

(2) (Giant-step) Compute Q := qs , Q2, . . . , Qs−1, and evaluate (the entries of) P(x)
simultaneously at 1, Q, . . . , Qs−1. Bluestein’s trick ⇒ O(M(s))

(3) Return the product P(Qs−1) · · ·P(Q)P(1). O(s)
10 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Main takeaways

The fast computation of the N-th term in a sequence has important consequences
and many applications.
Given a q-holonomic sequence, we can compute its N-th term faster than naively:
O(M(

√
N)) = Õ(

√
N) instead of O(N).

11 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

K = Q: Bit complexity

If q is an integer, the arithmetic complexity model is replaced by the
bit-complexity model.
MZ(n) denotes the cost of multiplication of two integers of bitsize n.
It is now known that MZ(n) = O(n log n) = Õ(n) [Harvey, van der Hoeven].
Let B be the bitsize of q and (un)n≥0 q-holonomic. Naively, uN can be computed
in Õ(N3B). We can do better (using binary splitting):

Theorem (Bostan, Y. 2020)

Let q ∈ Q \ {1} and N ∈ N. Let (un)n≥0 be a q-holonomic sequence satisfying the
recurrence

cr (q, qn)un+r + · · ·+ c0(q, qn)un = 0 n ≥ 0,

and assume that cr (q, qk) is nonzero for k = 0, . . . , N. The term uN can be computed
in Õ(N2B) bit operations, where B is the bitsize of q.

11 / 11



(q-)holonomic sequences Main theorem Sketch of the proof Summary

Computation of several terms

Theorem (Bostan, Y. 2020)

Under the assumptions of the main theorem, let N1 < N2 < · · · < Ns = N be positive
integers, where s ≤

√
N. Then, the terms uN1 , . . . , uNs can be computed altogether in

O(M(
√

N) log N) operations in K.

11 / 11


	What are (q-)holonomic sequences and where to find them?
	Main theorem
	Sketch of the proof
	Summary
	
	

