(g-)holonomic sequences Main theorem Sketch of the proof Summary
o

)

Computing the N-th term of a g-holonomic sequence

Sergey Yurkevich

&zz’w‘ Inria and University of Vienna
\NVENTEURSDUMDNDENUMERIQUE
Friday 26" November, 2021

universitat
wien

! Joint work with Alin Bostan, arxiv.org/abs/2012.08656

2Slides available at homepage.univie.ac.at/sergey.yurkevich /data/Nthghol_slides. pdf
1/11

https://arxiv.org/abs/2012.08656
https://homepage.univie.ac.at/sergey.yurkevich/data/Nthqhol_slides.pdf

(g-)holonomic sequences

flain theorem Sketch of the proof Summary
©00

[¢]

Problem statement

Given a sequence (up)n>0 and N € N, we want to compute upy as fast as possible.

2/11

(g-)holonomic sequences

flain theorem Sketch of the proof Summary
©00

[¢]

Problem statement

Given a sequence (up)n>0 and N € N, we want to compute upy as fast as possible.

m u, lie in some field K.

2/11

(g-)holonomic sequences in theorem Sketch of the proof Summary
000 e °

Problem statement

Given a sequence (up)n>0 and N € N, we want to compute upy as fast as possible.

m u, lie in some field K.

m The sequence is given by some recurrence relation and initial conditions.

2/11

(g-)holonomic sequences
©00

Problem statement

Given a sequence (up)n>0 and N € N, we want to compute upy as fast as possible.
m u, lie in some field K.
m The sequence is given by some recurrence relation and initial conditions.

m By “fast” we mean with as few arithmetic operations in K as possible.

2/11

(g-)holonomic sequences
©00

Problem statement

Given a sequence (up)n>0 and N € N, we want to compute upy as fast as possible.
m u, lie in some field K.
The sequence is given by some recurrence relation and initial conditions.

| |
m By “fast” we mean with as few arithmetic operations in K as possible.
m Tremendous number of applications:

m Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
Computations on real numbers (e.g., constants approximation [Chudnovsky?, 1987])
Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])

etc.

2/11

(g-)holonomic sequences
000

Holonomic (aka P-recursive) sequences

m A sequence (up)n>0 € K is called holonomic if it satisfies a linear recurrence
relation with polynomial coefficients:

cr(nupgr+ -+ co(n)u, =0 n>0.

3/11

(g-)holonomic sequences
000

Holonomic (aka P-recursive) sequences

m A sequence (up)n>0 € K is called holonomic if it satisfies a linear recurrence
relation with polynomial coefficients:

cr(nupgr+ -+ co(n)u, =0 n>0.
m Examples:
m u, = q" satisfies u,11 — qu, = 0;

m u, = n! satisfies u,y1 — (n+ 1)u, = 0;
I m\2 (n+k - 2 5 _ >
mouy =>4 o (1) ("5 satisfies (n+2)?upy2 — (110% +33n+25)upp1 — (n+1)2u, = 0.

3/11

(g-)holonomic sequences
000

Holonomic (aka P-recursive) sequences

m A sequence (up)n>0 € K is called holonomic if it satisfies a linear recurrence
relation with polynomial coefficients:

cr(nupgr+ -+ co(n)u, =0 n>0.

m Examples:
m u, = q" satisfies u,11 — qu, = 0;
m u, = n! satisfies up, 1 — (n+ 1)u, =0;
m U= (Z)z(ntk) satisfies (n+2)?un10 — (1102 +33n+25)u,y 1 — (n+1)2u, = 0.
m Given N € N, one can compute uy in (N)(\/N) arithmetic operations
[Strassen, 1977], [Chudnovsky?, 1988]. Naive: O(N)

3/11

(g-)holonomic sequences
00®

g-holonomic sequences

m A sequence (up)s>0 € K is called g-holonomic if for some ¢ < [< it satisfies a
linear g-recurrence relation with polynomial coefficients:

. q"upyr+ -+ 0(q.q")up =0 n>0.

4/11

(g-)holonomic sequences
00®

g-holonomic sequences

m A sequence (up)s>0 € K is called g-holonomic if for some ¢ < [< it satisfies a
linear g-recurrence relation with polynomial coefficients:

clg.9Mupyr +---+c0lqg.q")up, =0 n>0.
m Examples:
m u, = q" satisfies u,11 — qu, = 0;

mu,=[n]g!=(1+q)---(1+g+---+q" ") satisfies (g — 1)upp1 — ("' = 1)u, = O;
U=, 2K satisfies Upyo — (22" 4+ 1 upyr + 221y, = 0.

4/11

(g-)holonomic sequences
00®

g-holonomic sequences

m A sequence (up)s>0 € K is called g-holonomic if for some ¢ < [< it satisfies a
linear g-recurrence relation with polynomial coefficients:

clg.9Mupyr +---+c0lqg.q")up, =0 n>0.

m Examples:
m u, = q" satisfies u,11 — qu, = 0;
mu,=[nlg!=(1+q) - (1+q+ - +q"!)satisfies (¢ — 1)up1 — (¢"" — 1)u, = 0;
U=, 2K satisfies Upyo — (2241 + Dupyg + 22y, = 0.
m Given N € N, one can compute uy in O(v/N) arithmetic operations
[Bostan, Y., 2020]. Naive: O(N)

4/11

Main theorem
©000

(Arithmetic) complexity basics

m Arithmetic complexity means we count base operations (+, —, X, <) in K at unit
cost. Hence, in practice K is a finite field.

5/11

Main theorem
©000

(Arithmetic) complexity basics

m Arithmetic complexity means we count base operations (+, —, X,) in K at unit
cost. Hence, in practice K is a finite field.

m O(-) stands for the big-Oh notation and O(-) is used to hide polylogarithmic
factors in the argument.

5/11

Main theorem
©000

(Arithmetic) complexity basics

m Arithmetic complexity means we count base operations (+, —, X,) in K at unit
cost. Hence, in practice K is a finite field.

m O(-) stands for the big-Oh notation and O(-) is used to hide polylogarithmic
factors in the argument.
m M(d) is the cost of multiplication of two polynomials in K[x] of degree d. It is

known that M(d) = O(d log d log log d) = O(d). (Using FFT) Naive: O(d?)
m Given P(x) € K[x] of degree d, one can evaluate P(x) at q,4°,...,q% € K

simultaneously in complexity O(M(d)). (Using Bluestein’s trick) ~ Naive: O(d?)
m Two matrices in K"*" can be multiplied in complexity O(n®), where the best

current bound is w < 2.3729. Naive: O(n®)

5/11

Main theorem
0000

Theorem (Bostan, Y., 2020)

Let g € K\ {1} and N € N. Let (up)n>0 be a g-holonomic sequence satisfying the
recurrence

cr(q, 9" unyr +---+ (g, 9")un =0 n>0,

and assume thal.“ c.(q, g¥) is nonzero for k = 0,...,N. Then, uy can be computed in
O(M(V/'N)) = O(V/'N) operations in K. Naive: O(N)

6/11

Main theorem
0000

Theorem (Bostan, Y., 2020)

Let g € K\ {1} and N € N. Let (up)n>0 be a g-holonomic sequence satisfying the

recurrence

cr(q,9")untr + -+ c0(q,4")up =0 n=>0,
and assume thal.“ c.(q, g¥) is nonzero for k = 0,...,N. Then, uy can be computed in
O(M(v/N)) = O(v/'N) operations in K. Naive: O(N)

Theorem (Bostan, Y. 2020)

Under the assumptions of the theorem above, let d > 1 be the maximum of the
degrees of co(q,y),...,¢c(q,y). Then, for any N > d, the term uy can be computed
in O(r*v/Nd + r> M(v/Nd)) operations in K.

6/11

Main theorem
0000

Computing the N-th term of u, = >7_, qk2 € Fp, where p = 250 4 55 is prime and
q € IF, randomly chosen.

28
26 L
24 L
22 L
20
272 L
2—4 L
276 L

Time in seconds

—— naive: O(N) ||

——new: O(V/N) ||

l l l l 1 1 1 1

210 ol4 918 922 926 930 934 938
N

7/11

Main theorem
0000

An application: evaluation of polynomials

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.

8/11

Main theorem
0000

An application: evaluation of polynomials

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.
m Generically, Horner's rule needs O(deg P) operations.

8/11

Main theorem
0000

An application: evaluation of polynomials

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.
m Generically, Horner's rule needs O(deg P) operations.

m Our results imply that one can do better for large families of polynomials.

8/11

Main theorem
0000

An application: evaluation of polynomials

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.
m Generically, Horner's rule needs O(deg P) operations.

m Our results imply that one can do better for large families of polynomials.
m [Nogneng, Schost, 2018]: The truncated Jacobi theta function

Q9N(X) Z:1—|—X+X4+X9+...+XN2

can be evaluated at g € K in O(v/N) arithmetic operations.

8/11

Main theorem
0000

An application: evaluation of polynomials

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.
m Generically, Horner's rule needs O(deg P) operations.
m Our results imply that one can do better for large families of polynomials.
m [Nogneng, Schost, 2018]: The truncated Jacobi theta function

In(x) = T+x+xt+x0 4 4 xV

can be evaluated at g € K in O(v/N) arithmetic operations.
m Also follows from our result: Yn(q) = up, where up, = >}, qk2 is g-holonomic.

8/11

Main theorem
0000

An application: evaluation of polynomials

m Task: Given a polynomial P(x) € K[x] and g € K, deduce P(q) € K fast.
m Generically, Horner's rule needs O(deg P) operations.

m Our results imply that one can do better for large families of polynomials.
m [Nogneng, Schost, 2018]: The truncated Jacobi theta function

19N(X) 3:1+X+X4+X9+--.+XN2

can be evaluated at g € K in O(v/N) arithmetic operations.
m Also follows from our result: Yn(q) = up, where up, = >}, qk2 is g-holonomic.

m Same complexity and reasoning for H, o(x — a'), or g-Hermite polynomials,
or [1224(1 — x)3 mod x", etc.

8/11

Sketch of the proof
00

|dea of the proof

Note that
cr(q, q"unsr + -+ + co(q,q")un =0

can be translated into a first-order matrix-vector recurrence

_oa-1(99") . _cale9") (9,97
Untr C’(lq’q") o Cr(OCI»qn) Crg%qn) Untr—1 Uptr—1
= . : . . x| | = M(g")x
Un+t1 0 - 1 0 Up Un

9/11

Sketch of the proof
00

|dea of the proof

Note that
Cr(q, qn)un+r +- C()(q, qn)un =0

can be translated into a first-order matrix-vector recurrence

_oa-1(99") . _cale9") (9,97
Untr C’(lq’q") o Cr(OCI»qn) Crg%qn) Untr—1 Uptr—1
= . : . . x| | = M(g")x
Un+t1 0 - 1 0 Up Un

Hence, upy can be easily expressed in terms of the matrix g-factorial

M(g"™t) - M(q)M(1) € K™

9/11

Sketch of the proof
00

|dea of the proof

Note that
Cr(q, qn)un+r +- CO(qa qn)un =0

can be translated into a first-order matrix-vector recurrence

_oa-1(99") . _cale9") (9,97
Untr C’(lq’q") o Cr(OCI»qn) Crg%qn) Untr—1 Uptr—1
= x| | = M(g")x
Un+t1 0 - 1 0 Up Un

Hence, upy can be easily expressed in terms of the matrix g-factorial
M(g"™t) - M(q)M(1) € K™

= New problem: Given M(x) € K[x]"™*", compute M(qg"N=1)--- M(q)M(1) fast.

9/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute
M(g""1) - M(q)M(1)

in O(M(v/N)) arithmetic operations.

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute
M(g""1) - M(q)M(1)
in O(M(v/N)) arithmetic operations.

Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute
M(g"™t) - M(q)M(1)
in O(M(v/N)) arithmetic operations.
Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

Main algorithm (matrix g-factorial) N = s2

(1) (Baby-step) Compute g, q?,..., g *; deduce the coefficients of the polynomial
matrix P(x) := M(g*~1x)--- M(gx)M(x).

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute
M(g"™t) - M(q)M(1)
in O(M(v/N)) arithmetic operations.
Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

Main algorithm (matrix g-factorial) N = s2

(1) (Baby-step) Compute g, q?,..., g *; deduce the coefficients of the polynomial
matrix P(x) := M(g*~1x)--- M(gx)M(x). Divide-and-Conquer = O(M(s))

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute

M(g"t) - M(q)M(1)
in O(M(v/N)) arithmetic operations.

Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

Main algorithm (matrix g-factorial)

N=s?
(1) (Baby-step) Compute g, q?,..., g *; deduce the coefficients of the polynomial
matrix P(x) := M(g*~1x)--- M(gx)M(x). Divide-and-Conquer = O(M(s))

(2) (Giant-step) Compute @ := q°, Q?,..., Q°~L, and evaluate (the entries of) P(x)
simultaneously at 1, @, ..., QL.

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute

M(g"t) - M(q)M(1)
in O(M(v/N)) arithmetic operations.

Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

Main algorithm (matrix g-factorial)

N=s?
(1) (Baby-step) Compute g, q?,..., g *; deduce the coefficients of the polynomial
matrix P(x) := M(g*~1x)--- M(gx)M(x). Divide-and-Conquer = O(M(s))
(2) (Giant-step) Compute @ := q°, Q?,..., Q°~L, and evaluate (the entries of) P(x)

simultaneously at 1, @, ..., @ 1. Bluestein's trick = O(M(s))

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute
M(g""1) - M(q)M(1)

in O(M(v/N)) arithmetic operations.

Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

Main algorithm (matrix g-factorial)

N=s?
(1) (Baby-step) Compute g, q?,..., g *; deduce the coefficients of the polynomial
matrix P(x) := M(g*~1x)--- M(gx)M(x). Divide-and-Conquer = O(M(s))
(2) (Giant-step) Compute @ := q°, Q?,..., Q°~L, and evaluate (the entries of) P(x)

simultaneously at 1, @, ..., @ 1. Bluestein's trick = O(M(s))

(3) Return the product P(Q*71)--- P(Q)P(1).

10/11

Sketch of the proof
oe

Matrix g-factorial with baby-step/giant-step

Task: Given M(x) € K[x]"™*" and N € N, compute
M(g""1) - M(q)M(1)

in O(M(v/N)) arithmetic operations.

Note: The naive algorithm has O(/N) complexity. Assume that N = s? for s € N.

Main algorithm (matrix g-factorial)

N=s?
(1) (Baby-step) Compute g, q?,..., g *; deduce the coefficients of the polynomial
matrix P(x) := M(g*~1x)--- M(gx)M(x). Divide-and-Conquer = O(M(s))
(2) (Giant-step) Compute @ := q°, Q?,..., Q°~L, and evaluate (the entries of) P(x)

simultaneously at 1, @, ..., QL.

Bluestein's trick = O(M(s))
(3) Return the product P(Q*71)--- P(Q)P(1). o)

(s)

10/11

Summary
L

\EIHREVCENWENRS

m The fast computation of the N-th term in a sequence has important consequences
and many applications.

m Given a g-holonomic sequence, we can compute its N-th term faster than naively:

O(M(V/N)) = O(V/'N) instead of O(N).

11/11

L

K = Q: Bit complexity

m If g is an integer, the arithmetic complexity model is replaced by the
bit-complexity model.

m Mz(n) denotes the cost of multiplication of two integers of bitsize n.

m It is now known that Mz(n) = O(nlog n) = O(n) [Harvey, van der Hoeven].

m Let B be the bitsize of g and (us)n>0 g-holonomic. Naively, uy can be computed
in O(N3B). We can do better (using binary splitting):

Theorem (Bostan, Y. 2020)

Let g€ Q\ {1} and N € N. Let (up)n>0 be a g-holonomic sequence satisfying the
recurrence

C"(q7 qn)un-‘rr + -+ CO(q7 qn)un =0 n> 07

and assume that c,(q, g¥) is nonzero for k = 0,..., N. The term uy can be computed
in O(N?B) bit operations, where B is the bitsize of q.

11/11

Computation of several terms

Theorem (Bostan, Y. 2020)

Under the assumptions of the main theorem, let Ny < Np < --- < Ns = N be positive

integers, where s < \/N. Then, the terms uny, - - -, Uy, can be computed altogether in
O(M(v/N) log N) operations in K.

11/11

	What are (q-)holonomic sequences and where to find them?
	Main theorem
	Sketch of the proof
	Summary
	
	

