Computing the N-th term of a q-holonomic sequence ${ }^{1,2}$

Sergey Yurkevich

Inria and University of Vienna
Friday $26^{\text {th }}$ November, 2021

[^0]
Problem statement

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ and $N \in \mathbb{N}$, we want to compute u_{N} as fast as possible.

Problem statement

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ and $N \in \mathbb{N}$, we want to compute u_{N} as fast as possible.

- u_{n} lie in some field \mathbb{K}.

Problem statement

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ and $N \in \mathbb{N}$, we want to compute u_{N} as fast as possible.

- u_{n} lie in some field \mathbb{K}.
- The sequence is given by some recurrence relation and initial conditions.

Problem statement

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ and $N \in \mathbb{N}$, we want to compute u_{N} as fast as possible.

- u_{n} lie in some field \mathbb{K}.
- The sequence is given by some recurrence relation and initial conditions.

■ By "fast" we mean with as few arithmetic operations in \mathbb{K} as possible.

Problem statement

Given a sequence $\left(u_{n}\right)_{n \geq 0}$ and $N \in \mathbb{N}$, we want to compute u_{N} as fast as possible.

- u_{n} lie in some field \mathbb{K}.
- The sequence is given by some recurrence relation and initial conditions.

■ By "fast" we mean with as few arithmetic operations in \mathbb{K} as possible.

- Tremendous number of applications:
- Algebraic complexity theory (e.g., evaluation of polynomials [Strassen, 1977])
- Computations on real numbers (e.g., constants approximation [Chudnovsky², 1987])
- Algorithmic number theory (e.g., Wilson primes search [Costa,Gerbicz,Harvey, 2014])
- Effective algebraic geometry (e.g., counting points on curves [Harvey, 2014])
- etc.

Holonomic (aka P-recursive) sequences

- A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is called holonomic if it satisfies a linear recurrence relation with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0 \quad n \geq 0
$$

Holonomic (aka P-recursive) sequences

- A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is called holonomic if it satisfies a linear recurrence relation with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0 \quad n \geq 0
$$

- Examples:
- $u_{n}=q^{n}$ satisfies $u_{n+1}-q u_{n}=0$;
- $u_{n}=n$! satisfies $u_{n+1}-(n+1) u_{n}=0$;
- $u_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}$ satisfies $(n+2)^{2} u_{n+2}-\left(11 n^{2}+33 n+25\right) u_{n+1}-(n+1)^{2} u_{n}=0$.

Holonomic (aka P-recursive) sequences

- A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is called holonomic if it satisfies a linear recurrence relation with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0 \quad n \geq 0
$$

- Examples:
- $u_{n}=q^{n}$ satisfies $u_{n+1}-q u_{n}=0$;
- $u_{n}=n!$ satisfies $u_{n+1}-(n+1) u_{n}=0$;
- $u_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}$ satisfies $(n+2)^{2} u_{n+2}-\left(11 n^{2}+33 n+25\right) u_{n+1}-(n+1)^{2} u_{n}=0$.
- Given $N \in \mathbb{N}$, one can compute u_{N} in $\tilde{O}(\sqrt{N})$ arithmetic operations [Strassen, 1977], [Chudnovsky ${ }^{2}$, 1988].

q-holonomic sequences

- A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is called q-holonomic if for some $q \in \mathbb{K}$ it satisfies a linear q-recurrence relation with polynomial coefficients:

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0
$$

q-holonomic sequences

- A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is called q-holonomic if for some $q \in \mathbb{K}$ it satisfies a linear q-recurrence relation with polynomial coefficients:

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0
$$

■ Examples:

- $u_{n}=q^{n}$ satisfies $u_{n+1}-q u_{n}=0$;
- $u_{n}=[n]_{q}!=(1+q) \cdots\left(1+q+\cdots+q^{n-1}\right)$ satisfies $(q-1) u_{n+1}-\left(q^{n+1}-1\right) u_{n}=0$;
- $u_{n}=\sum_{k=0}^{n} 2^{k^{2}}$ satisfies $u_{n+2}-\left(2^{2 n+1}+1\right) u_{n+1}+2^{2 n-1} u_{n}=0$.

q-holonomic sequences

- A sequence $\left(u_{n}\right)_{n \geq 0} \in \mathbb{K}$ is called q-holonomic if for some $q \in \mathbb{K}$ it satisfies a linear q-recurrence relation with polynomial coefficients:

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0
$$

■ Examples:

- $u_{n}=q^{n}$ satisfies $u_{n+1}-q u_{n}=0$;
- $u_{n}=[n]_{q}!=(1+q) \cdots\left(1+q+\cdots+q^{n-1}\right)$ satisfies $(q-1) u_{n+1}-\left(q^{n+1}-1\right) u_{n}=0$;
- $u_{n}=\sum_{k=0}^{n} 2^{k^{2}}$ satisfies $u_{n+2}-\left(2^{2 n+1}+1\right) u_{n+1}+2^{2 n-1} u_{n}=0$.
- Given $N \in \mathbb{N}$, one can compute u_{N} in $\tilde{O}(\sqrt{N})$ arithmetic operations [Bostan, Y., 2020].

(Arithmetic) complexity basics

- Arithmetic complexity means we count base operations $(+,-, \times, \div)$ in \mathbb{K} at unit cost. Hence, in practice \mathbb{K} is a finite field.

(Arithmetic) complexity basics

- Arithmetic complexity means we count base operations $(+,-, \times, \div)$ in \mathbb{K} at unit cost. Hence, in practice \mathbb{K} is a finite field.
- $O(\cdot)$ stands for the big-Oh notation and $\tilde{O}(\cdot)$ is used to hide polylogarithmic factors in the argument.

(Arithmetic) complexity basics

- Arithmetic complexity means we count base operations $(+,-, \times, \div)$ in \mathbb{K} at unit cost. Hence, in practice \mathbb{K} is a finite field.
- $O(\cdot)$ stands for the big-Oh notation and $\tilde{O}(\cdot)$ is used to hide polylogarithmic factors in the argument.
■ $\mathbf{M}(d)$ is the cost of multiplication of two polynomials in $\mathbb{K}[x]$ of degree d. It is known that $\mathbf{M}(d)=O(d \log d \log \log d)=\tilde{O}(d)$. (Using FFT) Naive: $O\left(d^{2}\right)$
■ Given $P(x) \in \mathbb{K}[x]$ of degree d, one can evaluate $P(x)$ at $q, q^{2}, \ldots, q^{d} \in \mathbb{K}$ simultaneously in complexity $O\left(\mathbf{M}(d)\right.$). (Using Bluestein's trick) Naive: $O\left(d^{2}\right)$
- Two matrices in $\mathbb{K}^{n \times n}$ can be multiplied in complexity $O\left(n^{\omega}\right)$, where the best current bound is $\omega<2.3729$.

Main theorem

Theorem (Bostan, Y., 2020)

Let $q \in \mathbb{K} \backslash\{1\}$ and $N \in \mathbb{N}$. Let $\left(u_{n}\right)_{n \geq 0}$ be a q-holonomic sequence satisfying the recurrence

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0
$$

and assume that $c_{r}\left(q, q^{k}\right)$ is nonzero for $k=0, \ldots, N$. Then, u_{N} can be computed in $O(\mathbf{M}(\sqrt{N}))=\tilde{O}(\sqrt{N})$ operations in \mathbb{K}.

Main theorem

Theorem (Bostan, Y., 2020)

Let $q \in \mathbb{K} \backslash\{1\}$ and $N \in \mathbb{N}$. Let $\left(u_{n}\right)_{n \geq 0}$ be a q-holonomic sequence satisfying the recurrence

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0
$$

and assume that $c_{r}\left(q, q^{k}\right)$ is nonzero for $k=0, \ldots, N$. Then, u_{N} can be computed in $O(\mathrm{M}(\sqrt{N}))=\tilde{O}(\sqrt{N})$ operations in \mathbb{K}.

Theorem (Bostan, Y. 2020)

Under the assumptions of the theorem above, let $d \geq 1$ be the maximum of the degrees of $c_{0}(q, y), \ldots, c_{r}(q, y)$. Then, for any $N>d$, the term u_{N} can be computed in $O\left(r^{\omega} \sqrt{N d}+r^{2} \mathbf{M}(\sqrt{N d})\right)$ operations in \mathbb{K}.

Timings

Computing the N-th term of $u_{n}=\sum_{k=0}^{n} q^{k^{2}} \in \mathbb{F}_{p}$, where $p=2^{50}+55$ is prime and $q \in \mathbb{F}_{p}$ randomly chosen.

An application: evaluation of polynomials

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.

An application: evaluation of polynomials

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\operatorname{deg} P)$ operations.

An application: evaluation of polynomials

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\operatorname{deg} P)$ operations.

■ Our results imply that one can do better for large families of polynomials.

An application: evaluation of polynomials

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\operatorname{deg} P)$ operations.

■ Our results imply that one can do better for large families of polynomials.

- [Nogneng, Schost, 2018]: The truncated Jacobi theta function

$$
\vartheta_{N}(x):=1+x+x^{4}+x^{9}+\cdots+x^{N^{2}}
$$

can be evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ arithmetic operations.

An application: evaluation of polynomials

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\operatorname{deg} P)$ operations.

■ Our results imply that one can do better for large families of polynomials.

- [Nogneng, Schost, 2018]: The truncated Jacobi theta function

$$
\vartheta_{N}(x):=1+x+x^{4}+x^{9}+\cdots+x^{N^{2}}
$$

can be evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ arithmetic operations.

- Also follows from our result: $\vartheta_{N}(q)=u_{N}$, where $u_{n}=\sum_{k=0}^{n} q^{k^{2}}$ is q-holonomic.

An application: evaluation of polynomials

- Task: Given a polynomial $P(x) \in \mathbb{K}[x]$ and $q \in \mathbb{K}$, deduce $P(q) \in \mathbb{K}$ fast.
- Generically, Horner's rule needs $O(\operatorname{deg} P)$ operations.
- Our results imply that one can do better for large families of polynomials.
- [Nogneng, Schost, 2018]: The truncated Jacobi theta function

$$
\vartheta_{N}(x):=1+x+x^{4}+x^{9}+\cdots+x^{N^{2}}
$$

can be evaluated at $q \in \mathbb{K}$ in $\tilde{O}(\sqrt{N})$ arithmetic operations.

- Also follows from our result: $\vartheta_{N}(q)=u_{N}$, where $u_{n}=\sum_{k=0}^{n} q^{k^{2}}$ is q-holonomic.
- Same complexity and reasoning for $\prod_{i=0}^{N}\left(x-a^{i}\right)$, or q-Hermite polynomials, or $\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{3} \bmod x^{n}$, etc.

Idea of the proof

Note that

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0
$$

can be translated into a first-order matrix-vector recurrence

$$
\left[\begin{array}{c}
u_{n+r} \\
\vdots \\
u_{n+1}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{c_{r-1}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} & \cdots & -\frac{c_{1}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} & -\frac{c_{0}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} \\
1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right] \times\left[\begin{array}{c}
u_{n+r-1} \\
\vdots \\
u_{n}
\end{array}\right]=: M\left(q^{n}\right) \times\left[\begin{array}{c}
u_{n+r-1} \\
\vdots \\
u_{n}
\end{array}\right] .
$$

Idea of the proof

Note that

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0
$$

can be translated into a first-order matrix-vector recurrence

$$
\left[\begin{array}{c}
u_{n+r} \\
\vdots \\
u_{n+1}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{c_{r-1}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} & \cdots & -\frac{c_{1}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} & -\frac{c_{0}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} \\
1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right] \times\left[\begin{array}{c}
u_{n+r-1} \\
\vdots \\
u_{n}
\end{array}\right]=: M\left(q^{n}\right) \times\left[\begin{array}{c}
u_{n+r-1} \\
\vdots \\
u_{n}
\end{array}\right] .
$$

Hence, u_{N} can be easily expressed in terms of the matrix q-factorial

$$
M\left(q^{N-1}\right) \cdots M(q) M(1) \in \mathbb{K}^{r \times r}
$$

Idea of the proof

Note that

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0
$$

can be translated into a first-order matrix-vector recurrence

$$
\left[\begin{array}{c}
u_{n+r} \\
\vdots \\
u_{n+1}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{c_{r-1}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} & \cdots & -\frac{c_{1}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} & -\frac{c_{0}\left(q, q^{n}\right)}{c_{r}\left(q, q^{n}\right)} \\
1 & \cdots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right] \times\left[\begin{array}{c}
u_{n+r-1} \\
\vdots \\
u_{n}
\end{array}\right]=: M\left(q^{n}\right) \times\left[\begin{array}{c}
u_{n+r-1} \\
\vdots \\
u_{n}
\end{array}\right] .
$$

Hence, u_{N} can be easily expressed in terms of the matrix q-factorial

$$
M\left(q^{N-1}\right) \cdots M(q) M(1) \in \mathbb{K}^{r \times r}
$$

\Rightarrow New problem: Given $M(x) \in \mathbb{K}[x]^{r \times r}$, compute $M\left(q^{N-1}\right) \cdots M(q) M(1)$ fast.

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.
Main algorithm (matrix q-factorial)

$$
N=s^{2}
$$

(1) (Baby-step) Compute $q, q^{2}, \ldots, q^{s-1}$; deduce the coefficients of the polynomial matrix $P(x):=M\left(q^{s-1} x\right) \cdots M(q x) M(x)$.

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.
Main algorithm (matrix q-factorial)

$$
N=s^{2}
$$

(1) (Baby-step) Compute $q, q^{2}, \ldots, q^{s-1}$; deduce the coefficients of the polynomial matrix $P(x):=M\left(q^{s-1} x\right) \cdots M(q x) M(x) . \quad$ Divide-and-Conquer $\Rightarrow O(M(s))$

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.
Main algorithm (matrix q-factorial)

$$
N=s^{2}
$$

(1) (Baby-step) Compute $q, q^{2}, \ldots, q^{s-1}$; deduce the coefficients of the polynomial matrix $P(x):=M\left(q^{s-1} x\right) \cdots M(q x) M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
(2) (Giant-step) Compute $Q:=q^{s}, Q^{2}, \ldots, Q^{s-1}$, and evaluate (the entries of) $P(x)$ simultaneously at $1, Q, \ldots, Q^{s-1}$.

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.
Main algorithm (matrix q-factorial)

$$
N=s^{2}
$$

(1) (Baby-step) Compute $q, q^{2}, \ldots, q^{s-1}$; deduce the coefficients of the polynomial matrix $P(x):=M\left(q^{s-1} x\right) \cdots M(q x) M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
(2) (Giant-step) Compute $Q:=q^{s}, Q^{2}, \ldots, Q^{s-1}$, and evaluate (the entries of) $P(x)$ simultaneously at $1, Q, \ldots, Q^{s-1}$.

Bluestein's trick $\Rightarrow O(\mathrm{M}(s))$

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.
Main algorithm (matrix q-factorial)

$$
N=s^{2}
$$

(1) (Baby-step) Compute $q, q^{2}, \ldots, q^{s-1}$; deduce the coefficients of the polynomial matrix $P(x):=M\left(q^{s-1} x\right) \cdots M(q x) M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
(2) (Giant-step) Compute $Q:=q^{s}, Q^{2}, \ldots, Q^{s-1}$, and evaluate (the entries of) $P(x)$ simultaneously at $1, Q, \ldots, Q^{s-1}$.

Bluestein's trick $\Rightarrow O(\mathrm{M}(s))$
(3) Return the product $P\left(Q^{s-1}\right) \cdots P(Q) P(1)$.

Matrix q-factorial with baby-step/giant-step

Task: Given $M(x) \in \mathbb{K}[x]^{r \times r}$ and $N \in \mathbb{N}$, compute

$$
M\left(q^{N-1}\right) \cdots M(q) M(1)
$$

in $O(\mathbf{M}(\sqrt{N}))$ arithmetic operations.
Note: The naive algorithm has $O(N)$ complexity. Assume that $N=s^{2}$ for $s \in \mathbb{N}$.
Main algorithm (matrix q-factorial)

$$
N=s^{2}
$$

(1) (Baby-step) Compute $q, q^{2}, \ldots, q^{s-1}$; deduce the coefficients of the polynomial matrix $P(x):=M\left(q^{s-1} x\right) \cdots M(q x) M(x)$. Divide-and-Conquer $\Rightarrow O(M(s))$
(2) (Giant-step) Compute $Q:=q^{s}, Q^{2}, \ldots, Q^{s-1}$, and evaluate (the entries of) $P(x)$ simultaneously at $1, Q, \ldots, Q^{s-1}$.

Bluestein's trick $\Rightarrow O(\mathrm{M}(s))$
(3) Return the product $P\left(Q^{s-1}\right) \cdots P(Q) P(1)$.

Main takeaways

- The fast computation of the N-th term in a sequence has important consequences and many applications.
- Given a q-holonomic sequence, we can compute its N-th term faster than naively: $O(\mathbf{M}(\sqrt{N}))=\tilde{O}(\sqrt{N})$ instead of $O(N)$.

$\mathbb{K}=\mathbb{Q}$: Bit complexity

- If q is an integer, the arithmetic complexity model is replaced by the bit-complexity model.
■ $\mathbf{M}_{\mathbb{Z}}(n)$ denotes the cost of multiplication of two integers of bitsize n.
■ It is now known that $\mathbf{M}_{\mathbb{Z}}(n)=O(n \log n)=\tilde{O}(n)$ [Harvey, van der Hoeven].
■ Let B be the bitsize of q and $\left(u_{n}\right)_{n \geq 0} q$-holonomic. Naively, u_{N} can be computed in $\tilde{O}\left(N^{3} B\right)$. We can do better (using binary splitting):

Theorem (Bostan, Y. 2020)

Let $q \in \mathbb{Q} \backslash\{1\}$ and $N \in \mathbb{N}$. Let $\left(u_{n}\right)_{n \geq 0}$ be a q-holonomic sequence satisfying the recurrence

$$
c_{r}\left(q, q^{n}\right) u_{n+r}+\cdots+c_{0}\left(q, q^{n}\right) u_{n}=0 \quad n \geq 0
$$

and assume that $c_{r}\left(q, q^{k}\right)$ is nonzero for $k=0, \ldots, N$. The term u_{N} can be computed in $\tilde{O}\left(N^{2} B\right)$ bit operations, where B is the bitsize of q.

Computation of several terms

Theorem (Bostan, Y. 2020)
Under the assumptions of the main theorem, let $N_{1}<N_{2}<\cdots<N_{s}=N$ be positive integers, where $s \leq \sqrt{N}$. Then, the terms $u_{N_{1}}, \ldots, u_{N_{s}}$ can be computed altogether in $O(\mathbf{M}(\sqrt{N}) \log N)$ operations in \mathbb{K}.

[^0]: ${ }^{1}$ Joint work with Alin Bostan, arxiv.org/abs/2012.08656
 ${ }^{2}$ Slides available at homepage.univie.ac.at/sergey.yurkevich/data/Nthqhol_slides.pdf

