Motivation and Introduction

Algorithmic guessing in Maple (Theory)

Algorithmic guessing in Maple (Practice)

The art of educated algorithmic guessing (with gfun)

Sergey Yurkevich

Inria Saclay, University of Vienna, A. Bostan, H. Hauser

February, 2022

wien wien

Motivation and Introduction	Algorithmic guessing in Maple (Theory)	Algorithmic guessing in Maple (Practice)	Summary O
Guess the sequences		"Guessing – that's the important b of solving any problem."	eginning

- **1**, 3, 9, 27, 81, 243,
- **0**, 1, 3, 6, 10, 15,
- **1**, 1, 2, 3, 5, 8,
- **1**, 1, 2, 5, 14, 42,
- **1**, 5, 73, 1445, 33001,

Motivation and Introduction	Algorithmic guessing in Maple (Theory)	Algorithmic guessing in Maple (Practice)	Summary O
Guess the sequences		"Guessing – that's the important b of solving any problem."	peginning

- **1**, 3, 9, 27, 81, 243, 729
- **0**, 1, 3, 6, 10, 15,
- **1**, 1, 2, 3, 5, 8,
- **1**, 1, 2, 5, 14, 42,
- **1**, 5, 73, 1445, 33001,

Motivation and Introduction	Algorithmic guessing in Maple (Theory)	Algorithmic guessing in Maple (Practice)	Summary O
Guess the sequen	ces	"Guessing – that's the important b of solving any problem."	peginning

- **1**, 3, 9, 27, 81, 243, **729**
- **0**, 1, 3, 6, 10, 15, **21**
- **1**, 1, 2, 3, 5, 8,
- **1**, 1, 2, 5, 14, 42,
- **1**, 5, 73, 1445, 33001,

 3^n $(n^2 + n)/2$

- **1**, 3, 9, 27, 81, 243, **729**
- **0**, 1, 3, 6, 10, 15, **2**
- **1**, 1, 2, 3, 5, 8, **1**
- **1**, 1, 2, 5, 14, 42,
- **1**, 5, 73, 1445, 33001,

 3^{n} $(n^{2} + n)/2$ $F_{n+1} = F_{n} + F_{n-1}$

・ロト・西ト・ヨー うらぐ

- **1**, 3, 9, 27, 81, 243, **729**
- **0**, 1, 3, 6, 10, 15, **21**
- **1**, 1, 2, 3, 5, 8, **1**
- **1**, 1, 2, 5, 14, 42, **13**
- **1**, 5, 73, 1445, 33001,

 $3^{n} (n^{2} + n)/2$ $F_{n+1} = F_{n} + F_{n-1} \frac{1}{n+1} {2n \choose n}$

・ロ・・西・・川州・・日・ 日・ シック

- **1**, 3, 9, 27, 81, 243, **729**
- **0**, 1, 3, 6, 10, 15, **21**
- **1**, 1, 2, 3, 5, 8, **1**
- **1**, 1, 2, 5, 14, 42, **13**
- **1**, 5, 73, 1445, 33001, **819005**

 $3^{n} (n^{2} + n)/2$ $F_{n+1} = F_{n} + F_{n-1} \frac{1}{n+1} {\binom{2n}{n}} \sum_{k} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$

Algorithmic guessing in Maple (Practice) "Theory without practice is dead, and practice without theory is blind."

Enumerative combinatorics

Algorithmic guessing in Maple (Theory)

- Algebraic number theory
- Analytic number theory
- Algorithmic number theory
- Computer algebra
- Algebraic geometry
- Interconnections
- Applications in various sciences
- (e.g. counting walks in the quarter plane) (e.g. irrationality proof of $\zeta(3)$) (e.g. prime number theorem) (e.g. integer factorization) (e.g. fast computation of terms in sequences) (e.g. counting points on curves) (e.g. moonshine theory, or mirror symmetry)
 - (e.g. uniqueness of the Clifford torus model)

0000

Motivation and Introduction

Importance of sequences

Algorithmic guessing in Maple (Practice)

Summary O

P-recursive sequences and D-finite functions

A sequence $(u_n)_{n\geq 0}$ is **P-recursive**, if it satisfies a linear recurrence with polynomial coefficients:

 $c_r(n)u_{n+r}+\cdots+c_0(n)u_n=0.$

 $(u_n)_{n\geq 0}$ is hypergeometric if r=1.

Let $(\alpha)_n = \alpha \cdot (\alpha + 1) \cdots (\alpha + n - 1)$.

Then $u_n = \frac{(a)_n \cdot (b)_n}{(c)_n \cdot n!}$ satisfies

 $(c+n)(n+1)u_{n+1} - (a+n)(b+n)u_n = 0.$

Algorithmic guessing in Maple (Practice)

Summary O

P-recursive sequences and D-finite functions

A power series $f(x) \in \mathbb{Q}[[t]]$ is called **D-finite** if it satisfies a linear differential equation with polynomial coefficients:

 $p_n(x)f^{(n)}(x) + \dots + p_0(x)f(x) = 0.$ Let $(\alpha)_n = x \cdot (\alpha + 1) \cdots (\alpha + n - 1).$ Then ${}_2F_1 \begin{bmatrix} a & b \\ c & ; x \end{bmatrix} := \sum_{n \ge 0} \frac{(a)_n \cdot (b)_n}{(c)_n \cdot n!} x^n$

x(1-x)f''(x)+(c-(a+b+1)x)f'(x)-abf(x)=0.

satisfies

- Experimental mathematics and "Guess-and-Prove" propagated by G. Pólya.
- Three step process:
 - Generate data \rightarrow Make conjectures \rightarrow Prove them.
- Extremely fruitful when using a computer.
- P-recursive sequences/D-finite functions: ideal data structure for guessing.
- Find new structure.
- Find simpler formulas.
- Very efficient and easy in practice with computer algebra software (e.g. Maple).

クへで 5/16

Algorithmic guessing in Maple (Practice)

The gfun package in Maple

- By Bruno Salvy and Paul Zimmermann in 1992. Constantly improved.
- Can guess a sequence from its first terms.
- Implemented closure properties and interplay between recursions and ODEs.
- Version 3.20 comes with Maple 2021 with(gfun);

[Laplace, Parameters, algebraicsubs, algeqtodiffeq, algeqtoseries, algfuntoalgeq, borel, cauchyproduct, 'diffeq*diffeq', 'diffeq+diffeq', diffeqtohomdiffeq, diffeqtorec, guesseqn, guessgf, hadamardproduct, holexprtodiffeq, invborel, listtoalgeq, listtodiffeq, listtohypergeom, listtolist, listtoratpoly, listtorec, listtoseries, poltodiffeq, poltorec, ratpolytocoeff, 'rec*rec', 'rec+rec', rectodiffeq, rectohomrec, rectoproc, seriestoalgeq, seriestodiffeq, seriestohypergeom, seriestolist, seriestoratpoly, seriestorec, seriestoseries]

Newest version (3.84): perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/.

- Given: u_0, \ldots, u_N terms of a sequence $(u_n)_{n\geq 0}$.
- Want: a guess for a linear recurrence relation for $(u_n)_{n\geq 0}$.
- Idea: Look for $r \in \mathbb{N}$ and $c_0(x), \ldots, c_r(x) \in \mathbb{Q}[x]$ of some degree $d \in \mathbb{N}$ such that

$$c_r(j)u_{j+r} + \cdots + c_0(j)u_j = 0$$
 holds for $j = 0, \ldots, N - r$.

- Need to solve a system of linear equations, where the unknowns are the (r+1)(d+1) coefficients of the polynomials $c_i(x)$.
- If (r+1)(d+1) > N-r, a non-zero solution trivially exists. If $(r+1)(d+1) \ll N-r$, no reason for a solution, except if $(u_n)_n$ is P-recursive.
- If no bounds on r and d, first try r = 1, then successively increase r, while $d \approx N/r$ such that the linear system stays over-determined.

Motivation and Introduction	Algorithmic guessing in Maple (Theory) ⊙⊙●⊙	Algorithmic guessing in Maple (Practice)	Summary O
Example			

Given

 $(u_n)_{0 \le n \le 6} = (1, 4, 36, 400, 4900, 63504, 853776).$

We wish to find a linear recurrence of order r = 1 and degree d ≤ 2.
Look for a non-zero sextuple (a, b, c, d, e, f) ∈ Q⁶ such that

$$(fn^2 + en + d)u_{n+1} + (cn^2 + bn + a)u_n = 0, \quad n = 0, \dots, 5.$$

Need to solve:

$$\begin{pmatrix} u_0 & 0 & 0 & u_1 & 0 & 0 \\ u_1 & u_1 & u_1 & u_2 & u_2 & u_2 \\ u_2 & 2u_2 & 4u_2 & u_3 & 2u_3 & 4u_3 \\ u_3 & 3u_3 & 9u_3 & u_4 & 3u_4 & 9u_4 \\ u_4 & 4u_4 & 16u_4 & u_5 & 4u_5 & 16u_5 \\ u_5 & 5u_5 & 25u_5 & u_6 & 5u_6 & 25u_6 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \\ e \\ f \end{pmatrix} = 0.$$

Solution space: span $(-4, -16, -16, 1, 2, 1)^t$. Guessed recurrence:

$$(n^{2} + 2n + 1)u_{n+1} - (16n^{2} + 16n + 4)u_{n} = 0.$$

• Instead of solving the system over \mathbb{Q} it is faster to solve over \mathbb{F}_p for several primes p. Then combine the solutions using CRT.

 Exploit the structure of the obtained linear systems (generalized Hermite-Padé approximation) [Beckermann, Labahn, 1997].

Motivation and Introduction	Algorithmic guessing in Maple (Theory)	Algorithmic guessing in Maple (Practice)	Summary
	0000	•00000	O
Toy examples	"In math	ematics often the simplest is the	best."

- > with(gfun):
- > 1 := [1,3,9,27]:
- > listtorec(l,u(n));

 $\{-3*u(n) + u(n + 1), u(0) = 1\}$

> listtodiffeq(l,y(x));

(-3*x + 1)*y(x) - 1

powers of 3

<□><□><□><□><□><□><□><□><□><□><0< 10/16

Motivation and Introduction	Algorithmic guessing in Maple (Theory)	Algorithmic guessing in Maple (Practice) •00000	Summary O
Tov examples	"In math	ematics often the simplest is th	e best."

- > with(gfun):
- > l := [0,1,3,6,10,15,21]:
- > listtorec(l,u(n));

 $(n^2 + n)/2$

$$\{(-n - 2)*u(n) + n*u(n + 1), u(0) = 0, u(1) = 1\}$$

> listtodiffeq(l,y(x));

$$(2*x + 1)*y(x) + (x^2 - x)*y'(x)$$

> dsolve(%);

$$x/(1 - x)^{3}$$

10 / 16

Motivation and Introduction	Algorithmic guessing in Maple (Theory)	Algorithmic guessing in Maple (Practice)	
Toy examples	"In m	nathematics often the simplest is	the best."

> with(gfun):

> l := [1,3,19,147,1251,11253,104959,1004307,9793891, Apéry numbers 96918753,970336269,9807518757,99912156111,1024622952993,10567623342519]: > listtorec(l,u(n));

$$\left\{-(n+1)^{2}*u(n) + (-11*n^{2} - 33*n - 25)*u(n + 1) + (n+2)^{2}*u(n + 2)\right\}$$

> listtodiffeq(l,y(x))[1];

 $\left\{(x + 3)*y(x) + (3*x^2 + 22*x - 1)*y''(x) + (x^3 + 11*x^2 - x)*y''(x)\right\}$

> dsolve(%,[hypergeometricsols]);

hypergeom([1/12, 7/12], [1], q(x))/p(x)^(1/6) ${}_{2}F_{1}\begin{bmatrix} 1/12 & 7/12\\ 1 & ; q(x) \end{bmatrix} \cdot \frac{1}{p(x)^{1/6}}$

10/16

Algorithmic guessing in Maple (Practice)

Summary O

Application 1: The Yang-Zagier numbers

■ In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

$$c_{n-3} + 20 \left(4500 n^2 - 18900 n + 19739 \right) c_{n-2} + 80352000 n (5n-1)(5n-2)(5n-4) c_n + 25 \left(2592000 n^4 - 16588800 n^3 + 39118320 n^2 - 39189168 n + 14092603 \right) c_{n-1} = 0,$$

with initial terms $c_0 = 1, c_1 = -161/(2^{10} \cdot 3^5)$ and $c_2 = 26605753/(2^{23} \cdot 3^{12} \cdot 5^2)$.

- Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola, et al, 2015].
- [Yang and Zagier]: $a_n = c_n \cdot (3/5)_n \cdot (4/5)_n \cdot (2^{10} \cdot 3^5 \cdot 5^4)^n \in \mathbb{Z}$. $(\alpha)_n \coloneqq \alpha \cdot (\alpha + 1) \cdots (\alpha + n - 1)$.
- "this is a very mysterious example [...] of numbers defined by recursions with polynomial coefficients." - [Zagier, 2018]

$$a_n = c_n \cdot (3/5)_n \cdot (4/5)_n \cdot (2^{10} \cdot 3^5 \cdot 5^4)^n.$$

Three different ways to find a linear recurrence relation:

- **1** Use effective closure properties of P-recursive sequences.
- 2 First guess and then prove the recursion.
- **3** Guess and prove an ODE for $\sum_{n} a_n x^n$. Then convert it into a recurrence.

	Order of recurrence	Order of ODE	
1 Closure properties	3	4	
2 Guessing the recurrence	2	3	
3 Guessing the ODE	3	2	
			• • = •

The generating function of the Yang-Zagier numbers

• $f(x) = \sum_n a_n x^n$ solves

$$q_{2}(x)y''(x) + q_{1}(x)y'(x) + q_{0}(x)y(x) = 0, \text{ where}$$
(1)

$$q_{2}(x) = 5x(302400x - 31)(373248000x^{2} + 216000x + 1),$$

$$q_{1}(x) = 1354442342400000x^{3} + 64571904000x^{2} - 61473600x - 31,$$

$$q_{0}(x) = 300(902961561600x^{2} - 240974784x - 4991).$$

• Any solution of (1) is a linear combination of

$$A_1(x) \coloneqq u_1(x) \cdot {}_2F_1\left[\frac{-1/60 \ 11/60}{2/3}; q(x)\right] \text{ and } A_2(x) \coloneqq u_2(x) \cdot {}_2F_1\left[\frac{19/60 \ 31/60}{4/3}; q(x)\right]$$

• "Guess and prove": $A_1(x)$ and $A_2(x)$ are algebraic functions.

Theorem (Bostan, Weil, Y., 2021)

The generating function of the Yang-Zagier numbers is algebraic.

Algorithmic guessing in Maple (Practice)

Application 2: Monotonicity of Iso

- Canham model predicts shape of biomembranes like blood cells [Canham, 1970].
- Model asks to minimize the Willmore energy

$$W(S) = \int_{S} H^2 \mathrm{d}A,$$

over orientable closed surfaces S with prescribed genus, area and volume.

• [Yu, Chen, 2021]: The solution to the model is unique in the genus-one case, if lso(z) is strictly increasing on $z \in [0, \sqrt{2} - 1)$, where

$$\mathsf{Iso}(z) \coloneqq 3 \cdot 2^{3/4} \pi^{3/2} \cdot \frac{\bar{V}(z^2)}{\bar{A}^{3/2}(z^2)} = \frac{2^{3/4}}{\pi} \left(\frac{3}{4} + \frac{9}{8}z^2 - \frac{243}{16}z^4 + \cdots\right),$$

$$\bar{\mathcal{A}}(z) = \frac{1}{\sqrt{2}\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\sqrt{2} + \sin(v)}{Q(u, v, 1; \sqrt{z})^{2}} \mathrm{d}u \mathrm{d}v \text{ and } \bar{V}(z) = \frac{1}{\sqrt{2}\pi} \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{r\sqrt{2} + r^{2}\sin(v)}{Q(u, v, r; \sqrt{z})^{3}} \mathrm{d}u \mathrm{d}v \mathrm{d}r,$$

$$Q(u, v, r; z) = 1 + 2(\sqrt{2} + r\sin(v))\cos(u)z + (2 + r^{2} + 2\sqrt{2}r\sin(v))z^{2}.$$

Investigation of Iso $(z)=3\cdot 2^{3/4}\pi^{3/2}\cdotar{V}(z^2)/ar{{\cal A}}^{3/2}(z^2)$

• Guessing finds second-order differential equations for $\bar{A}(z)$ and $\bar{V}(z)$:

$$\begin{aligned} z(z-1)(z^2-6z+1)(z+1)^2\bar{A}''(z)+(z+1)(5z^4-8z^3-32z^2+28z-1)\bar{A}'(z)\\ &+(4z^4+11z^3-z^2-43z+13)\bar{A}(z)=0\\ z(z-1)(z+1)(z^2-6z+1)^2\bar{V}''(z)+3(3z^5-24z^4-2z^3+56z^2-25z+8)\bar{V}(z)\\ &+(z^2-6z+1)(7z^4-22z^3-18z^2+26z-1)\bar{V}'(z)=0. \end{aligned}$$

- Using Creative Telescoping we can prove the guesses.
- Maple solves the ODEs: $p(z) = 1 6z + z^2$

$$\bar{A}(z) = \frac{4(z+1)}{p(z)^{3/2}} \cdot {}_2F_1 \begin{bmatrix} -\frac{1}{2} & \frac{3}{2} \\ 1 & z \end{bmatrix}; \frac{-4z}{p(z)} \text{ and } \bar{V}(z) = \frac{2}{p(z)^{3/2}} \cdot {}_2F_1 \begin{bmatrix} -\frac{3}{2} & -\frac{5}{2} \\ 1 & z \end{bmatrix}; \frac{-4z}{p(z)} \end{bmatrix}.$$

Theorem (Melczer, Mezzarobba 2020; and Bostan, Y. 2021)

The function lso(z) is increasing on $[0, \sqrt{2} - 1)$.

| かへで 15 / 16

Algorithmic guessing in Maple (Practice)

"We must idealize."

Main takeaways

- P-recursive sequences are ubiquitous.
- Automated guessing allows finding structure in sequences.
- Modern computer algebra (e.g. gfun) makes efficient guessing easy.

- Given: u_0, \ldots, u_N terms of a sequence $(u_n)_{n\geq 0}$.
- Want: a guess for a linear differential equation for $\sum_{n\geq 0} u_n x^n$.
- Idea: Look for $r \in \mathbb{N}$ and $c_0(x), \ldots, c_r(x) \in \mathbb{Q}[x]$ of some degree $d \in \mathbb{N}$ such that

$$c_r(x) \cdot \partial^r \sum_{n=0}^N u_n x^n + \dots + c_0(x) \cdot \sum_{n=0}^N u_n x^n = 0$$

- Need to solve a system of linear equations, where the unknowns are the (r+1)(d+1) coefficients of the polynomials $c_i(x)$.
- If (r+1)(d+1) > N, a non-zero solution trivially exists. If $(r+1)(d+1) \ll N$, no reason for a solution, except if $(u_n)_n$ is P-recursive.
- If no bounds on r and d, first try r = 1, then successively increase r, while $d \approx N/r$ such that the linear system stays over-determined.

Given

$$(u_n)_{0\leq n\leq 4}=(1,2,6,20,70).$$

• We wish to find a linear differential equation of order r = 1 and degree $d \le 1$.

• Look for a non-zero quadruple $(a, b, c, d) \in \mathbb{Q}^4$ such that

$$(c+dx)(1+2x+6x^2+20x^3+70x^4)'+(a+bx)(1+2x+6x^2+20x^3+70x^4)=0.$$

Need to solve:

$$\begin{pmatrix} u_0 & 0 & u_1 & 0 \\ u_1 & u_0 & 2u_2 & u_1 \\ u_2 & u_1 & 3u_3 & 2u_2 \\ u_3 & u_2 & 4u_4 & 3u_3 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = 0.$$

Solution space: span $(2, 0, -1, 4)^t$. Guessed differential equation:

$$(4x-1)f'(x) + 2f(x) = 0$$

- 34