The art of educated algorithmic guessing (with gfun)

Sergey Yurkevich

INVENTEURS DU MONDE NUMÉRIQUE

Inria Saclay, University of Vienna, A. Bostan, H. Hauser

February, 2022
universität wien

Guess the sequences

■ $1,3,9,27,81,243$,
■ $0,1,3,6,10,15$,

- $1,1,2,3,5,8$,
- $1,1,2,5,14,42$,

■ 1, 5, 73, 1445, 33001,

- 1, 3, 9, 27, 81, 243, 729

■ $0,1,3,6,10,15$,

- $1,1,2,3,5,8$,
- 1, 1, 2, 5, 14, 42,

■ 1, 5, 73, 1445, 33001,

Guess the sequences

- 1, 3, 9, 27, 81, 243, 729
- $0,1,3,6,10,15,21$
- $1,1,2,3,5,8$,
- 1, 1, 2, 5, 14, 42,
- 1, 5, 73, 1445, 33001,

Guess the sequences

 of solving any problem."- 1, 3, 9, 27, 81, 243, 729
- 0, 1, 3, 6, 10, 15, 21
- $1,1,2,3,5,8,13$
- 1, 1, 2, 5, 14, 42,
- 1, 5, 73, 1445, 33001,

$$
\begin{array}{r}
3^{n} \\
\left(n^{2}+n\right) / 2 \\
F_{n+1}=F_{n}+F_{n-1}
\end{array}
$$

Guess the sequences

 of solving any problem."- 1, 3, 9, 27, 81, 243, 729
- $0,1,3,6,10,15,21$
- $1,1,2,3,5,8,13$
- 1, 1, 2, 5, 14, 42, 132
- 1, 5, 73, 1445, 33001,

$$
\begin{aligned}
& 3^{n} \\
& \left(n^{2}+n\right) / 2 \\
& F_{n+1}=F_{n}+F_{n-1} \\
& \frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

Guess the sequences

 of solving any problem."■ 1, 3, 9, 27, 81, 243, 729

$$
\begin{array}{r}
3^{n} \\
\left(n^{2}+n\right) / 2 \\
F_{n+1}=F_{n}+F_{n-1} \\
\frac{1}{n+1}\binom{2 n}{n} \\
\sum_{k}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
\end{array}
$$

- Enumerative combinatorics
- Algebraic number theory
- Analytic number theory
- Algorithmic number theory
- Computer algebra
- Algebraic geometry
- Interconnections
- Applications in various sciences
(e.g. counting walks in the quarter plane)
(e.g. irrationality proof of $\zeta(3)$) (e.g. prime number theorem) (e.g. integer factorization)
(e.g. fast computation of terms in sequences)
(e.g. counting points on curves)
(e.g. moonshine theory, or mirror symmetry)
(e.g. uniqueness of the Clifford torus model)

P-recursive sequences and D-finite functions

$$
\sum_{n} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} x^{n} \quad \exp (x)+\sqrt{1-x}
$$

A sequence $\left(u_{n}\right)_{n \geq 0}$ is P -recursive, if it satisfies a linear recurrence with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0 .
$$

$\left(u_{n}\right)_{n \geq 0}$ is hypergeometric if $r=1$.
Let $(\alpha)_{n}=\alpha \cdot(\alpha+1) \cdots(\alpha+n-1)$.
Then $u_{n}=\frac{(a)_{n} \cdot(b)_{n}}{(c)_{n} \cdot n!}$ satisfies

$$
(c+n)(n+1) u_{n+1}-(a+n)(b+n) u_{n}=0 .
$$

P-recursive sequences and D-finite functions

A power series $f(x) \in \mathbb{Q} \llbracket t \rrbracket$ is called D-finite if it satisfies a linear differential equation with polynomial coefficients:
$p_{n}(x) f^{(n)}(x)+\cdots+p_{0}(x) f(x)=0$.
Let $(\alpha)_{n}=x \cdot(\alpha+1) \cdots(\alpha+n-1)$.
Then ${ }_{2} F_{1}\left[\begin{array}{c}a b \\ c\end{array} ; x\right]:=\sum_{n \geq 0} \frac{(a)_{n} \cdot(b)_{n}}{(c)_{n} \cdot n!} x^{n}$ satisfies

$$
x(1-x) f^{\prime \prime}(x)+(c-(a+b+1) x) f^{\prime}(x)-a b f(x)=0
$$

The Guess-and-Prove approach

■ Experimental mathematics and "Guess-and-Prove" propagated by G. Pólya.

- Three step process: Generate data \rightarrow Make conjectures \rightarrow Prove them.
- Extremely fruitful when using a computer.
- P-recursive sequences/D-finite functions: ideal data structure for guessing.
- Find new structure.
- Find simpler formulas.
- Very efficient and easy in practice with computer algebra software (e.g. Maple).

The gfun package in Maple

■ By Bruno Salvy and Paul Zimmermann in 1992. Constantly improved.

- Can guess a sequence from its first terms.

■ Implemented closure properties and interplay between recursions and ODEs.
■ Version 3.20 comes with Maple 2021 with(gfun);
[Laplace, Parameters, algebraicsubs, algeqtodiffeq, algeqtoseries, algfuntoalgeq, borel, cauchyproduct, 'diffeq*diffeq', 'diffeq+diffeq', diffeqtohomdiffeq, diffeqtorec, guesseqn, guessgf, hadamardproduct, holexprtodiffeq, invborel, listtoalgeq, listtodiffeq, listtohypergeom, listtolist, listtoratpoly, listtorec, listtoseries, poltodiffeq, poltorec, ratpolytocoeff, 'rec*rec', 'rec+rec', rectodiffeq, rectohomrec, rectoproc, seriestoalgeq, seriestodiffeq, seriestohypergeom, seriestolist, seriestoratpoly, seriestorec, seriestoseries]
■ Newest version (3.84): perso.ens-lyon.fr/bruno.salvy/software/the-gfun-package/.

Guessing for P-recursive sequences

■ Given: u_{0}, \ldots, u_{N} terms of a sequence $\left(u_{n}\right)_{n \geq 0}$.

- Want: a guess for a linear recurrence relation for $\left(u_{n}\right)_{n \geq 0}$.

■ Idea: Look for $r \in \mathbb{N}$ and $c_{0}(x), \ldots, c_{r}(x) \in \mathbb{Q}[x]$ of some degree $d \in \mathbb{N}$ such that

$$
c_{r}(j) u_{j+r}+\cdots+c_{0}(j) u_{j}=0 \quad \text { holds for } \quad j=0, \ldots, N-r
$$

■ Need to solve a system of linear equations, where the unknowns are the $(r+1)(d+1)$ coefficients of the polynomials $c_{i}(x)$.
■ If $(r+1)(d+1)>N-r$, a non-zero solution trivially exists. If $(r+1)(d+1) \ll N-r$, no reason for a solution, except if $\left(u_{n}\right)_{n}$ is P -recursive.

- If no bounds on r and d, first try $r=1$, then successively increase r, while $d \approx N / r$ such that the linear system stays over-determined.

Example

■ Given

$$
\left(u_{n}\right)_{0 \leq n \leq 6}=(1,4,36,400,4900,63504,853776) .
$$

$■$ We wish to find a linear recurrence of order $r=1$ and degree $d \leq 2$.

- Look for a non-zero sextuple $(a, b, c, d, e, f) \in \mathbb{Q}^{6}$ such that

$$
\left(f n^{2}+e n+d\right) u_{n+1}+\left(c n^{2}+b n+a\right) u_{n}=0, \quad n=0, \ldots, 5 .
$$

- Need to solve:

$$
\left(\begin{array}{cccccc}
u_{0} & 0 & 0 & u_{1} & 0 & 0 \\
u_{1} & u_{1} & u_{1} & u_{2} & u_{2} & u_{2} \\
u_{2} & 2 u_{2} & 4 u_{2} & u_{3} & 2 u_{3} & 4 u_{3} \\
u_{3} & 3 u_{3} & 9 u_{3} & u_{4} & 3 u_{4} & 9 u_{4} \\
u_{4} & 4 u_{4} & 16 u_{4} & u_{5} & 4 u_{5} & 16 u_{5} \\
u_{5} & 5 u_{5} & 25 u_{5} & u_{6} & 5 u_{6} & 25 u_{6}
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right)=0 .
$$

■ Solution space: $\operatorname{span}(-4,-16,-16,1,2,1)^{t}$. Guessed recurrence:

$$
\left(n^{2}+2 n+1\right) u_{n+1}-\left(16 n^{2}+16 n+4\right) u_{n}=0 .
$$

How to do guessing efficiently?

- Instead of solving the system over \mathbb{Q} it is faster to solve over \mathbb{F}_{p} for several primes p. Then combine the solutions using CRT.

■ Exploit the structure of the obtained linear systems (generalized Hermite-Padé approximation) [Beckermann, Labahn, 1997].

Toy examples

> with(gfun):
> 1 := [1,3,9,27]:
powers of 3
> listtorec(l,u(n));

$$
\{-3 * u(n)+u(n+1), u(0)=1\}
$$

> listtodiffeq(l,y(x));

$$
(-3 * \mathrm{x}+1) * \mathrm{y}(\mathrm{x})-1
$$

Toy examples

> with(gfun):
> 1 := $[0,1,3,6,10,15,21]:$

$$
\left(n^{2}+n\right) / 2
$$

> listtorec(l,u(n));

$$
\{(-n-2) * u(n)+n * u(n+1), u(0)=0, u(1)=1\}
$$

> listtodiffeq(l,y(x));

$$
(2 * x+1) * y(x)+\left(x^{\wedge} 2-x\right) * y \prime(x)
$$

> dsolve(\%);

$$
x /(1-x) \wedge 3
$$

Toy examples

> with(gfun):
> 1 := [1,1,2,5,14,42]:
Catalan numbers
> rec := listtorec(l,u(n)) [1];

$$
\text { rec }:=\{(-4 * n-2) * u(n)+(n+2) * u(n+1), u(0)=1\}
$$

> rsolve(rec,u(n));

$$
\text { 4^n*binomial (n }-1 / 2,-1 / 2) /(n+1)
$$

> listtodiffeq(l,y(x));

FAIL

> rectodiffeq(rec,u(n),y(x));
$\left\{2 * y(x)+(10 * x-2) * y \prime(x)+\left(4 * x^{\wedge} 2-x\right) * y \prime(x), y(0)=1, D(y)(0)=1\right\}$
> dsolve(\%);

$$
2 /(1+\operatorname{sqrt}(1-4 * x))
$$

Toy examples

> with(gfun):
> 1 := $[1,3,19,147,1251,11253,104959,1004307,9793891$, Apéry numbers 96918753,970336269,9807518757,99912156111,1024622952993,10567623342519]: > listtorec(l,u(n));

$$
\{-(\mathrm{n}+1) \wedge 2 * \mathrm{u}(\mathrm{n})+(-11 * \mathrm{n} \wedge 2-33 * \mathrm{n}-25) * u(\mathrm{n}+1)+(\mathrm{n}+2) \wedge 2 * u(\mathrm{n}+2)\}
$$

> listtodiffeq(l,y(x))[1];
$\left\{(x+3) * y(x)+\left(3 * x^{\wedge} 2+22 * x-1\right) * y \prime \prime(x)+\left(x^{\wedge} 3+11 * x^{\wedge} 2-x\right) * y \prime \prime \prime(x)\right\}$
> dsolve(\%,[hypergeometricsols]);

$$
\begin{aligned}
& \text { hypergeom }([1 / 12,7 / 12], \quad[1], \mathrm{q}(\mathrm{x})) / \mathrm{p}(\mathrm{x})^{\wedge}(1 / 6) \\
& { }_{2} F_{1}\left[\begin{array}{c}
1 / 127 / 12 \\
1
\end{array} \mathrm{q}(\mathrm{x})\right] \cdot \frac{1}{p(x)^{1 / 6}}
\end{aligned}
$$

Application 1: The Yang-Zagier numbers

■ In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

$$
\begin{aligned}
& c_{n-3}+20\left(4500 n^{2}-18900 n+19739\right) c_{n-2}+80352000 n(5 n-1)(5 n-2)(5 n-4) c_{n}+ \\
& 25\left(2592000 n^{4}-16588800 n^{3}+39118320 n^{2}-39189168 n+14092603\right) c_{n-1}=0
\end{aligned}
$$

with initial terms $c_{0}=1, c_{1}=-161 /\left(2^{10} \cdot 3^{5}\right)$ and $c_{2}=26605753 /\left(2^{23} \cdot 3^{12} \cdot 5^{2}\right)$.
■ Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola, et al, 2015].

- [Yang and Zagier]: $a_{n}=c_{n} \cdot(3 / 5)_{n} \cdot(4 / 5)_{n} \cdot\left(2^{10} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$.

$$
(\alpha)_{n}:=\alpha \cdot(\alpha+1) \cdots(\alpha+n-1) .
$$

- "this is a very mysterious example [...] of numbers defined by recursions with polynomial coefficients." - [Zagier, 2018]

Guessing for the Yang-Zagier numbers

$$
a_{n}=c_{n} \cdot(3 / 5)_{n} \cdot(4 / 5)_{n} \cdot\left(2^{10} \cdot 3^{5} \cdot 5^{4}\right)^{n} .
$$

Three different ways to find a linear recurrence relation:
1 Use effective closure properties of P-recursive sequences.
2 First guess and then prove the recursion.
3 Guess and prove an ODE for $\sum_{n} a_{n} x^{n}$. Then convert it into a recurrence.

	Order of recurrence	Order of ODE
$\mathbf{1}$ Closure properties	3	4
2 Guessing the recurrence	2	3
3 Guessing the ODE	3	2

The generating function of the Yang-Zagier numbers

- $f(x)=\sum_{n} a_{n} x^{n}$ solves

$$
\begin{align*}
& q_{2}(x) y^{\prime \prime}(x)+q_{1}(x) y^{\prime}(x)+q_{0}(x) y(x)=0, \quad \text { where } \tag{1}\\
& q_{2}(x)=5 x(302400 x-31)\left(373248000 x^{2}+216000 x+1\right), \\
& q_{1}(x)=1354442342400000 x^{3}+64571904000 x^{2}-61473600 x-31, \\
& q_{0}(x)=300\left(902961561600 x^{2}-240974784 x-4991\right) .
\end{align*}
$$

- Any solution of (1) is a linear combination of

$$
A_{1}(x):=u_{1}(x) \cdot{ }_{2} F_{1}\left[\begin{array}{c}
-1 / 6011 / 60 \\
2 / 3
\end{array} q(x)\right] \text { and } A_{2}(x):=u_{2}(x) \cdot{ }_{2} F_{1}\left[\begin{array}{c}
19 / 6031 / 60 \\
4 / 3
\end{array} q(x)\right] .
$$

■ "Guess and prove": $A_{1}(x)$ and $A_{2}(x)$ are algebraic functions.

Theorem (Bostan, Weil, Y., 2021)

The generating function of the Yang-Zagier numbers is algebraic.

Application 2: Monotonicity of Iso

■ Canham model predicts shape of biomembranes like blood cells [Canham, 1970].

- Model asks to minimize the Willmore energy

$$
W(S)=\int_{S} H^{2} \mathrm{~d} A
$$

over orientable closed surfaces S with prescribed genus, area and volume.

- [Yu, Chen, 2021]: The solution to the model is unique in the genus-one case, if Iso(z) is strictly increasing on $z \in[0, \sqrt{2}-1)$, where

$$
\begin{gathered}
\operatorname{Iso}(z):=3 \cdot 2^{3 / 4} \pi^{3 / 2} \cdot \frac{\bar{V}\left(z^{2}\right)}{\bar{A}^{3 / 2}\left(z^{2}\right)}=\frac{2^{3 / 4}}{\pi}\left(\frac{3}{4}+\frac{9}{8} z^{2}-\frac{243}{16} z^{4}+\cdots\right), \\
\bar{A}(z)=\frac{1}{\sqrt{2} \pi} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\sqrt{2}+\sin (v)}{Q(u, v, 1 ; \sqrt{z})^{2}} \mathrm{~d} u \mathrm{~d} v \text { and } \bar{V}(z)=\frac{1}{\sqrt{2} \pi} \int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{r \sqrt{2}+r^{2} \sin (v)}{Q(u, v, r ; \sqrt{z})^{3}} \mathrm{~d} u \mathrm{~d} v \mathrm{~d} r, \\
Q(u, v, r ; z)=1+2(\sqrt{2}+r \sin (v)) \cos (u) z+\left(2+r^{2}+2 \sqrt{2} r \sin (v)\right) z^{2}
\end{gathered}
$$

Investigation of Iso $(z)=3 \cdot 2^{3 / 4} \pi^{3 / 2} \cdot \bar{V}\left(z^{2}\right) / \bar{A}^{3 / 2}\left(z^{2}\right)$

- Guessing finds second-order differential equations for $\bar{A}(z)$ and $\bar{V}(z)$:

$$
\begin{aligned}
& z(z-1)\left(z^{2}-6 z+1\right)(z+1)^{2} \bar{A}^{\prime \prime}(z)+(z+1)\left(5 z^{4}-8 z^{3}-32 z^{2}+28 z-1\right) \bar{A}^{\prime}(z) \\
& \quad+\left(4 z^{4}+11 z^{3}-z^{2}-43 z+13\right) \bar{A}(z)=0 \\
& z(z-1)(z+1)\left(z^{2}-6 z+1\right)^{2} \bar{V}^{\prime \prime}(z)+3\left(3 z^{5}-24 z^{4}-2 z^{3}+56 z^{2}-25 z+8\right) \bar{V}(z) \\
& \quad+\left(z^{2}-6 z+1\right)\left(7 z^{4}-22 z^{3}-18 z^{2}+26 z-1\right) \bar{V}^{\prime}(z)=0
\end{aligned}
$$

■ Using Creative Telescoping we can prove the guesses.

- Maple solves the ODEs:

$$
p(z)=1-6 z+z^{2}
$$

$$
\bar{A}(z)=\frac{4(z+1)}{p(z)^{3 / 2}} \cdot{ }_{2} F_{1}\left[\begin{array}{cc}
-\frac{1}{2} & \frac{3}{2} \\
1 & ; \frac{-4 z}{p(z)}
\end{array}\right] \text { and } \bar{V}(z)=\frac{2}{p(z)^{3 / 2}} \cdot{ }_{2} F_{1}\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}{ }^{-\frac{5}{2}} ; \frac{-4 z}{p(z)}\right] .
$$

Theorem (Melczer, Mezzarobba 2020; and Bostan, Y. 2021)

The function Iso (z) is increasing on $[0, \sqrt{2}-1)$.

Main takeaways

- P -recursive sequences are ubiquitous.
- Automated guessing allows finding structure in sequences.

■ Modern computer algebra (e.g. gfun) makes efficient guessing easy.

Bonus: Guessing differntial equations mathematics in the making consists of guesses.

- Given: u_{0}, \ldots, u_{N} terms of a sequence $\left(u_{n}\right)_{n \geq 0}$.
- Want: a guess for a linear differential equation for $\sum_{n \geq 0} u_{n} x^{n}$.

■ Idea: Look for $r \in \mathbb{N}$ and $c_{0}(x), \ldots, c_{r}(x) \in \mathbb{Q}[x]$ of some degree $d \in \mathbb{N}$ such that

$$
c_{r}(x) \cdot \partial^{r} \sum_{n=0}^{N} u_{n} x^{n}+\cdots+c_{0}(x) \cdot \sum_{n=0}^{N} u_{n} x^{n}=0
$$

- Need to solve a system of linear equations, where the unknowns are the $(r+1)(d+1)$ coefficients of the polynomials $c_{i}(x)$.
■ If $(r+1)(d+1)>N$, a non-zero solution trivially exists. If $(r+1)(d+1) \ll N$, no reason for a solution, except if $\left(u_{n}\right)_{n}$ is P-recursive.
■ If no bounds on r and d, first try $r=1$, then successively increase r, while $d \approx N / r$ such that the linear system stays over-determined.

Bonus: Example

- Given

$$
\left(u_{n}\right)_{0 \leq n \leq 4}=(1,2,6,20,70)
$$

- We wish to find a linear differential equation of order $r=1$ and degree $d \leq 1$.
- Look for a non-zero quadruple $(a, b, c, d) \in \mathbb{Q}^{4}$ such that

$$
(c+d x)\left(1+2 x+6 x^{2}+20 x^{3}+70 x^{4}\right)^{\prime}+(a+b x)\left(1+2 x+6 x^{2}+20 x^{3}+70 x^{4}\right)=0 .
$$

- Need to solve:

$$
\left(\begin{array}{cccc}
u_{0} & 0 & u_{1} & 0 \\
u_{1} & u_{0} & 2 u_{2} & u_{1} \\
u_{2} & u_{1} & 3 u_{3} & 2 u_{2} \\
u_{3} & u_{2} & 4 u_{4} & 3 u_{3}
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=0 .
$$

■ Solution space: $\operatorname{span}(2,0,-1,4)^{t}$. Guessed differential equation:

$$
(4 x-1) f^{\prime}(x)+2 f(x)=0
$$

