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Introduction Main result Practice and timings Conclusion

An open problem

Consider Fibonacci numbers: F0,F1, · · · ∈ Z.

The bit-size of FN is in Θ(N).

Can compute FN =
(
0 1

)(1 1
1 0

)N (
1
0

)
in O(MZ(N)) binary operations.

Open problem

Can we compute FN ∈ Z in O(N) binary operations?
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Polynomial case

Fibonacci polynomials:

F0(x) = 0,F1(x) = 1 and Fn+2(x) = xFn+1(x) + Fn(x), for n ≥ 0

Euclidean division for bivariate polynomials:

Rn(x , y) = yn mod y2 − xy − 1

Powers of a polynomial matrix:

Mn(x) =

(
x 1
1 0

)n

Question

Can we compute FN ,RN ,MN ∈ K[x ] in O(N) arithmetic operations?
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Introduction Main result Practice and timings Conclusion

How to compute FN(x) or RN(x , y) or MN(x)?

From the definition: Fn+2(x) = xFn+1(x) + Fn(x).

Use binary powering to compute MN , where Mn(x) =

(
x 1
1 0

)n

:

Mn(x) =

{
M n

2
(x)2 if n even,

M(x) ·M n−1
2
(x)2 if n odd.

Write FN(x) = f0 + f1x + · · ·+ fNx
N . Then (fk)k≥0 satisfy:

fk+2 =
(N + k + 1)(N − k − 1)

4(k + 1)(k + 2)
fk for k ≥ 0,

with (f0, f1) = (1, 0) for odd N and (f0, f1) = (0,N/2) for even N.
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Polynomial C-finite sequences

A polynomial C-finite sequence (un(x))n≥0 ∈ K[x ]N satisfies a recurrence

un+r (x) = cr−1(x)un+r−1(x) + · · ·+ c0(x)un(x),

of some order r ∈ N and polynomial coefficients c0(x), . . . , cr−1(x) ∈ K[x ].

The generating function is rational:∑
k≥0

uk(x)y
k =

P(x , y)

y rQ(x , 1/y)
∈ K(x , y)

For some a1(x), . . . , ak(x) ∈ K(x) and qi (n, x) ∈ K(a1(x), . . . , an(x))[n]:

un(x) = q1(n, x)a1(x)
n + · · ·+ qk(n, x)ak(x)

n

.. un(x) = (0 . . . 0 1) ·


cr−1(x) cr−2(x) · · · c1(x) c0(x)

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


n

·

ur−1(x)
...

u0(x)
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Theorem (Bostan, Neiger, Y., 2023)

Let d , r ∈ N. There exists an algorithm solving in O(N) operations (±,×,÷) in K:

SeqTerm: Given a polynomial C-finite sequence (un(x))n≥0 of order and degree at
most r and d , compute the Nth term uN(x).

BivModPow: Given polynomials Q(x , y) and P(x , y) in K[x , y ] of degrees in y and
x at most r and d , with P(x , y) monic in y , compute Q(x , y)N mod P(x , y).

PolMatPow: Given a square polynomial matrix M(x) over K[x ] of size and degree
at most r and d , compute M(x)N .

SeqTerm

BivModPow PolMatPow

=⇒

=⇒

=⇒rational g.f.

Cayley-Hamilton Thm.

Companion matrix
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The case r = 1

un+1(x) = c0(x)un(x) ⇒ un(x) = c0(x)
nu0(x).

[Flajolet, Salvy, 1997]: Problem 4 in “The SIGSAM challenges”:

f (x) = p(x)N satisfies the ODE p(x)f ′(x)− Np′(x)f (x) = 0.

The coefficients satisfy

The full coefficient of x3000 could be computed by [Flajolet, Salvy, 1997] in 15sec!
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SeqTerm in O(N)

Lemma

Let a(x) ∈ K(x) and let g(x) be D-finite. Then f (x) = g(a(x)) is D-finite.

Recall: If (un(x))n≥0 is polynomial C-finite then:

un(x) = q1(n, x)a1(x)
n + · · ·+ qk(n, x)ak(x)

n.

Hence un(x) satisfies a “small” ODE (degree and order independent of n).

Write uN(x) = c0 + c1x + c2x
2 + · · · . Then: (ck)k≥0 satisfies “small” recursion.

Compute initial terms and unroll ⇒ all ci in O(N) arithmetic operations
⇒ uN(x) in O(N) arithmetic complexity.
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SeqTerm in O(N)

Lemma

Let a(x) ∈ K(x) and let g(x) be D-finite. Then f (x) = g(a(x)) is D-finite.
In particular, a(x)n satisfies a linear ODE of order and degree independent of n.
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What if unrolling is impossible?

Consider un = 2n + xn + x2n.

Small ODE: x2u′′′n (x)− 3x(n − 1)u′′n(x) + (2n − 1)(n − 1)u′n(x) = 0,

For un(x) =
∑

k≥0 cn,kx
k obtain the recursion: (2n − k)(n − k)kcn,k = 0.

Problem: Cannot unroll (for k = 0 and k = N and k = 2N)!

Solution: Define vn(x) = un(x + 1). Then for vn(x) =
∑

k≥0 dn,kx
k :

(k + 1)(k + 2)dn,k+2 − (k + 1)(3n − 2k − 1)dn,k+1 + (2n − k)(n − k)dn,k = 0.

Compute vn(x), then compute uN and u2N via cM,i =
∑

k≥0 dM,k

(k
i

)
(−1)k−i .

This strategy works in general because the ODE has finitely many singularities.

9 / 13



Introduction Main result Practice and timings Conclusion

What if unrolling is impossible?

Consider un = 2n + xn + x2n.

Small ODE: x2u′′′n (x)− 3x(n − 1)u′′n(x) + (2n − 1)(n − 1)u′n(x) = 0,

For un(x) =
∑

k≥0 cn,kx
k obtain the recursion: (2n − k)(n − k)kcn,k = 0.

Problem: Cannot unroll (for k = 0 and k = N and k = 2N)!

Solution: Define vn(x) = un(x + 1). Then for vn(x) =
∑

k≥0 dn,kx
k :

(k + 1)(k + 2)dn,k+2 − (k + 1)(3n − 2k − 1)dn,k+1 + (2n − k)(n − k)dn,k = 0.

Compute vn(x), then compute uN and u2N via cM,i =
∑

k≥0 dM,k

(k
i

)
(−1)k−i .

This strategy works in general because the ODE has finitely many singularities.
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SeqTerm in O(N) in practice

Goal: Find small ODE for uN(x) efficiently.

Using Cauchy’s integral formula write:

un(x) =
1

2πi

˛
|y |=ϵ

U(x , y)

yn+1
dy .

Creative Telescoping finds:(
pk(n, x)∂

k
x + · · ·+ p0(n, x)︸ ︷︷ ︸
“Telescoper”

)U(x , y)

yn+1
= ∂y

(
C (n, x , y)︸ ︷︷ ︸
“Certificate”

)
.

By Cauchy’s integral theorem:
(
(pk(n, x)∂

k
x + · · ·+ p0(n, x)

)
un = 0.

Can prove for reduction based Creative Telescoping:

Order and degree of the Telescoper are independent of n.
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Algorithm by example: Fibonacci polynomials

Fn+2(x) = xFn+1(x) + Fn(x) with F0(x) = 0,F1(x) = 1.

Generating function:
∑
k≥0

Fky
k =

1

1− xy − y2
.

Hence: Fn =
1

2πi

˛
|y |=ϵ

1

(1− xy − y2)yn+1
dy .

DEtools[Zeilberger](1/(1-x*y-y^2)/y^n, x, y, Dx); O(1)

(x2 + 4)F ′′
n (x)

2 + 3xF ′
n(x) + (1− n2)Fn(x) = 0.

gfun[diffeqtorec](deq, F(x), u(k)); O(1)

4(k + 1)(k + 2)fk+2 − (n + k + 1)(n − k − 1)fk = 0.

Compute f0, f1 by binary powering mod x2. O(log(N))

Unroll. O(N)
11 / 13
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M(x) ∈ K[x ]4×4.

Want: M(x)N .

degM(x) = 2, . . . , 7.

N = 28, 210, . . . , 222.

 0

 2

 4

 6

 8

 10

 12

 6  8  10  12  14  16  18  20  22  24

B
P
 /

 (
U

R
+

IT
)

log2(N)

r=4,d=2
r=4,d=3
r=4,d=4
r=4,d=5
r=4,d=6
r=4,d=7

BP: Time for binary powering.
UR+IT: Time for unrolling + computing initial terms.
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Summary and future work

SeqTerm, BivModPow and PolMatPow can be solved in complexity O(N).

M(x)N can be computed faster than with binary powering, in practice and theory.

Many future works:
More detailed complexity (w.r.t. r , d).

The K th coefficient of the Nth term.

More general sequences.

Connection to the Jordan–Chevalley decomposition.
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Bonus: More timings

13 / 13

M(x) ∈ K[x ]r×r .

Want: M(x)N .

degM(x) = 2.

r = 2, . . . , 7.

N = 28, 210, . . . , 222.
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BP: Time for binary powering.
UR+IT: Time for unrolling + computing initial terms.
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Bonus: Some precomputation timings
Maple Sage Mathematica ℓ dn dx

r d redct HT ZB c t ct FCT CT HCT

2 0.0 0.1 0.0 0.1 0.5 0.2 0.2 0.2 2 2 16
2 4 0.0 0.0 0.0 0.1 0.6 0.4 0.4 0.3 2 2 34

6 0.0 0.0 0.0 0.1 0.6 0.7 0.5 0.5 2 2 52
8 0.0 0.0 0.0 0.1 0.8 1.0 0.7 0.7 2 2 70

1 0.0 0.2 0.0 0.5 2.0 2.0 1.3 1.3 3 5 24
2 0.0 0.1 0.8 3.4 3.1 4.0 2.6 2.5 3 5 54

3 3 0.1 0.2 0.8 9.3 5.6 10 5.7 5.4 3 5 84
4 0.1 0.5 18 19 8.2 17 9.4 8.9 3 5 114
5 0.2 1.1 5.1 32 12 25 14 14 3 5 144
6 0.5 1.7 9.8 49 17 35 19 20 3 5 174

1 0.4 2.9 23 117 20 31 25 25 4 9 58
2 1.7 17 410 749 45 101 96 95 4 9 128

4 3 4.4 43 89 295 376 373 4 9 198
4 12 82 172 388 752 693 4 9 268
5 18 128 280 635 4 9 338

1 11 34 538 163 847 780 5 14 115
5 2 64 183 515 5 14 250

3 159 526 5 14 385
4 345 5 14 520 13 / 13

Want M(x)N , with
M(x) ∈ K[x ]r×r , degree d .

Seconds for Telescoper of

P(x , y)

yn+1Q(x , y)
,

Q(x , y) is the char. poly.

redct: [Bostan, Chyzak,
Lairez, Salvy,’18].
HermiteTelescoping (HT):
[Bostan, Lairez, Salvy,’13].
Zeilberger (ZB): [DETools].
c t: [Chyzak, ’00].
ct: [Kauers,Mezzarobba,’19].
CT: [Koutschan, ’10].
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