Beating binary powering for polynomial matrices

ISSAC'23 (Tromsø, Norway)

Sergey Yurkevich

Inria Saclay and University of Vienna

An open problem

- Consider Fibonacci numbers: $F_{0}, F_{1}, \cdots \in \mathbb{Z}$.
- The bit-size of F_{N} is in $\Theta(N)$.
- Can compute $F_{N}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{N}\binom{1}{0}$ in $O\left(\mathrm{M}_{\mathbb{Z}}(N)\right)$ binary operations.

An open problem

■ Consider Fibonacci numbers: $F_{0}, F_{1}, \cdots \in \mathbb{Z}$.

- The bit-size of F_{N} is in $\Theta(N)$.
- Can compute $F_{N}=\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)^{N}\binom{1}{0}$ in $O\left(\mathrm{M}_{\mathbb{Z}}(N)\right)$ binary operations.

Open problem

Can we compute $F_{N} \in \mathbb{Z}$ in $O(N)$ binary operations?

Polynomial case

- Fibonacci polynomials:

$$
F_{0}(x)=0, F_{1}(x)=1 \text { and } F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x), \text { for } n \geq 0
$$

■ Euclidean division for bivariate polynomials:

$$
R_{n}(x, y)=y^{n} \bmod y^{2}-x y-1
$$

- Powers of a polynomial matrix:

$$
M_{n}(x)=\left(\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right)^{n}
$$

Polynomial case

■ Fibonacci polynomials:

$$
\begin{gathered}
F_{0}(x)=0, F_{1}(x)=1 \text { and } F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x), \text { for } n \geq 0 \\
F_{9}(x)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8} \text { and } F_{10}(x)=5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} .
\end{gathered}
$$

- Euclidean division for bivariate polynomials:

$$
\begin{gathered}
R_{n}(x, y)=y^{n} \bmod y^{2}-x y-1 \\
R_{10}(x, y)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8}+\left(5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9}\right) y
\end{gathered}
$$

- Powers of a polynomial matrix:

$$
M_{n}(x)=\left(\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right)^{n}
$$

$$
M_{10}(x)=\left(\begin{array}{cc}
1+15 x^{2}+35 x^{4}+28 x^{6}+9 x^{8}+x^{10} & 5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} \\
5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} & 1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8}
\end{array}\right)
$$

Polynomial case

■ Fibonacci polynomials:

$$
\begin{gathered}
F_{0}(x)=0, F_{1}(x)=1 \text { and } F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x), \text { for } n \geq 0 \\
F_{9}(x)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8} \text { and } F_{10}(x)=5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9}
\end{gathered}
$$

- Euclidean division for bivariate polynomials:

$$
\begin{gathered}
R_{n}(x, y)=y^{n} \bmod y^{2}-x y-1 \\
R_{10}(x, y)=1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8}+\left(5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9}\right) y
\end{gathered}
$$

- Powers of a polynomial matrix:

$$
M_{n}(x)=\left(\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right)^{n}
$$

$$
M_{10}(x)=\left(\begin{array}{cc}
1+15 x^{2}+35 x^{4}+28 x^{6}+9 x^{8}+x^{10} & 5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} \\
5 x+20 x^{3}+21 x^{5}+8 x^{7}+x^{9} & 1+10 x^{2}+15 x^{4}+7 x^{6}+x^{8}
\end{array}\right)
$$

Question

Can we compute $F_{N}, R_{N}, M_{N} \in \mathbb{K}[x]$ in $O(N)$ arithmetic operations?

How to compute $F_{N}(x)$ or $R_{N}(x, y)$ or $M_{N}(x)$?

- From the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$.

How to compute $F_{N}(x)$ or $R_{N}(x, y)$ or $M_{N}(x)$?

- From the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$. $O\left(N^{2}\right)$

How to compute $F_{N}(x)$ or $R_{N}(x, y)$ or $M_{N}(x)$?

■ From the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$.

- Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{\frac{n}{2}}(x)^{2} & \text { if } n \text { even } \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd }\end{cases}
$$

How to compute $F_{N}(x)$ or $R_{N}(x, y)$ or $M_{N}(x)$?

■ From the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$.

$$
O\left(N^{2}\right)
$$

- Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{\frac{n}{2}}(x)^{2} & \text { if } n \text { even, } \quad O(M(N))=O(N \log (N)) \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd. }\end{cases}
$$

How to compute $F_{N}(x)$ or $R_{N}(x, y)$ or $M_{N}(x)$?

■ From the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$.

$$
O\left(N^{2}\right)
$$

- Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{\frac{n}{2}}(x)^{2} & \text { if } n \text { even, } \quad O(M(N))=O(N \log (N)) \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd. }\end{cases}
$$

- Write $F_{N}(x)=f_{0}+f_{1} x+\cdots+f_{N} x^{N}$. Then $\left(f_{k}\right)_{k \geq 0}$ satisfy:

$$
f_{k+2}=\frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_{k} \quad \text { for } k \geq 0
$$

with $\left(f_{0}, f_{1}\right)=(1,0)$ for odd N and $\left(f_{0}, f_{1}\right)=(0, N / 2)$ for even N.

How to compute $F_{N}(x)$ or $R_{N}(x, y)$ or $M_{N}(x)$?

■ From the definition: $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$.

$$
O\left(N^{2}\right)
$$

■ Use binary powering to compute M_{N}, where $M_{n}(x)=\left(\begin{array}{ll}x & 1 \\ 1 & 0\end{array}\right)^{n}$:

$$
M_{n}(x)= \begin{cases}M_{\frac{n}{2}}(x)^{2} & \text { if } n \text { even, } \quad O(M(N))=O(N \log (N)) \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^{2} & \text { if } n \text { odd. }\end{cases}
$$

■ Write $F_{N}(x)=f_{0}+f_{1} x+\cdots+f_{N} x^{N}$. Then $\left(f_{k}\right)_{k \geq 0}$ satisfy:

$$
\begin{equation*}
f_{k+2}=\frac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_{k} \quad \text { for } k \geq 0 \tag{N}
\end{equation*}
$$

with $\left(f_{0}, f_{1}\right)=(1,0)$ for odd N and $\left(f_{0}, f_{1}\right)=(0, N / 2)$ for even N.

Polynomial C-finite sequences

- A polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$
u_{n+r}(x)=c_{r-1}(x) u_{n+r-1}(x)+\cdots+c_{0}(x) u_{n}(x)
$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_{0}(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.

Polynomial C-finite sequences

- A polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$
u_{n+r}(x)=c_{r-1}(x) u_{n+r-1}(x)+\cdots+c_{0}(x) u_{n}(x)
$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_{0}(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.

- The generating function is rational:

$$
\sum_{k \geq 0} u_{k}(x) y^{k}=\frac{P(x, y)}{y^{r} Q(x, 1 / y)} \in \mathbb{K}(x, y)
$$

Polynomial C-finite sequences

- A polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$
u_{n+r}(x)=c_{r-1}(x) u_{n+r-1}(x)+\cdots+c_{0}(x) u_{n}(x)
$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_{0}(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.

- The generating function is rational:

$$
\sum_{k \geq 0} u_{k}(x) y^{k}=\frac{P(x, y)}{y^{r} Q(x, 1 / y)} \in \mathbb{K}(x, y)
$$

■ For some $a_{1}(x), \ldots, a_{k}(x) \in \overline{\mathbb{K}(x)}$ and $q_{i}(n, x) \in \mathbb{K}\left(a_{1}(x), \ldots, a_{n}(x)\right)[n]$:

$$
u_{n}(x)=q_{1}(n, x) a_{1}(x)^{n}+\cdots+q_{k}(n, x) a_{k}(x)^{n}
$$

Polynomial C-finite sequences

■ A polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$
u_{n+r}(x)=c_{r-1}(x) u_{n+r-1}(x)+\cdots+c_{0}(x) u_{n}(x)
$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_{0}(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.

- The generating function is rational:

$$
\sum_{k \geq 0} u_{k}(x) y^{k}=\frac{P(x, y)}{y^{r} Q(x, 1 / y)} \in \mathbb{K}(x, y)
$$

■ For some $a_{1}(x), \ldots, a_{k}(x) \in \overline{\mathbb{K}(x)}$ and $q_{i}(n, x) \in \mathbb{K}\left(a_{1}(x), \ldots, a_{n}(x)\right)[n]$:

$$
u_{n}(x)=q_{1}(n, x) a_{1}(x)^{n}+\cdots+q_{k}(n, x) a_{k}(x)^{n}
$$

$$
\text { - } u_{n}(x)=\left(\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccccc}
c_{r-1}(x) & c_{r-2}(x) & \cdots & c_{1}(x) & c_{0}(x) \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)^{n} \cdot\left(\begin{array}{c}
u_{r-1}(x) \\
\vdots \\
u_{0}(x)
\end{array}\right)
$$

Theorem (Bostan, Neiger, Y., 2023)

Let $d, r \in \mathbb{N}$. There exists an algorithm solving in $O(N)$ operations (\pm, \times, \div) in \mathbb{K} :

- SEQTerm: Given a polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0}$ of order and degree at most r and d, compute the N th term $u_{N}(x)$.
- BivModPow: Given polynomials $Q(x, y)$ and $P(x, y)$ in $\mathbb{K}[x, y]$ of degrees in y and x at most r and d, with $P(x, y)$ monic in y, compute $Q(x, y)^{N} \bmod P(x, y)$.
- PolMatPow: Given a square polynomial matrix $M(x)$ over $\mathbb{K}[x]$ of size and degree at most r and d, compute $M(x)^{N}$.

Theorem (Bostan, Neiger, Y., 2023)

Let $d, r \in \mathbb{N}$. There exists an algorithm solving in $O(N)$ operations (\pm, \times, \div) in \mathbb{K} :

- SEQTerm: Given a polynomial C-finite sequence $\left(u_{n}(x)\right)_{n \geq 0}$ of order and degree at most r and d, compute the N th term $u_{N}(x)$.
- BivModPow: Given polynomials $Q(x, y)$ and $P(x, y)$ in $\mathbb{K}[x, y]$ of degrees in y and x at most r and d, with $P(x, y)$ monic in y, compute $Q(x, y)^{N} \bmod P(x, y)$.
- PolMatPow: Given a square polynomial matrix $M(x)$ over $\mathbb{K}[x]$ of size and degree at most r and d, compute $M(x)^{N}$.

SEQTERM

Companion matrix

The case $r=1$

- $u_{n+1}(x)=c_{0}(x) u_{n}(x) \Rightarrow u_{n}(x)=c_{0}(x)^{n} u_{0}(x)$.

The case $r=1$

- $u_{n+1}(x)=c_{0}(x) u_{n}(x) \Rightarrow u_{n}(x)=c_{0}(x)^{n} u_{0}(x)$.

■ [Flajolet, Salvy, 1997]: Problem 4 in "The SIGSAM challenges":

Problem 4

What is the coefficient of x^{3000} in the expansion of the polynomial

$$
(x+1)^{2000}\left(x^{2}+x+1\right)^{1000}\left(x^{4}+x^{3}+x^{2}+x+1\right)^{500}
$$

to 13 significant digits?

The case $r=1$

- $u_{n+1}(x)=c_{0}(x) u_{n}(x) \Rightarrow u_{n}(x)=c_{0}(x)^{n} u_{0}(x)$.

■ [Flajolet, Salvy, 1997]: Problem 4 in "The SIGSAM challenges":

Problem 4

What is the coefficient of x^{3000} in the expansion of the polynomial

$$
(x+1)^{2000}\left(x^{2}+x+1\right)^{1000}\left(x^{4}+x^{3}+x^{2}+x+1\right)^{500}
$$

to 13 significant digits?

- $f(x)=p(x)^{N}$ satisfies the ODE $p(x) f^{\prime}(x)-N p^{\prime}(x) f(x)=0$.

The case $r=1$

■ $u_{n+1}(x)=c_{0}(x) u_{n}(x) \Rightarrow u_{n}(x)=c_{0}(x)^{n} u_{0}(x)$.
■ [Flajolet, Salvy, 1997]: Problem 4 in "The SIGSAM challenges":

Problem 4

What is the coefficient of x^{3000} in the expansion of the polynomial

$$
(x+1)^{2000}\left(x^{2}+x+1\right)^{1000}\left(x^{4}+x^{3}+x^{2}+x+1\right)^{500}
$$

to 13 significant digits?

- $f(x)=p(x)^{N}$ satisfies the ODE $p(x) f^{\prime}(x)-N p^{\prime}(x) f(x)=0$.
- The coefficients satisfy

$$
\begin{gathered}
r 123:=\{u(1)=3500, u(2)=6124750, u(3)=7144958500, u(4)=6251073531125, \\
u(5)=4375037588062700, u(6)=2551584931812376500, u(0)=1 \\
(n-6000) u(n)+(3 n-14497) u(n+1)+(5 n-19990) u(n+2) \\
+(6 n-19482) u(n+3)+(6 n-16476) u(n+4)+(5 n-9975) u(n+5) \\
+(3 n-3482) u(n+6)+(n+7) u(n+7)\}
\end{gathered}
$$

The case $r=1$

■ $u_{n+1}(x)=c_{0}(x) u_{n}(x) \Rightarrow u_{n}(x)=c_{0}(x)^{n} u_{0}(x)$.
■ [Flajolet, Salvy, 1997]: Problem 4 in "The SIGSAM challenges":

Problem 4

What is the coefficient of x^{3000} in the expansion of the polynomial

$$
(x+1)^{2000}\left(x^{2}+x+1\right)^{1000}\left(x^{4}+x^{3}+x^{2}+x+1\right)^{500}
$$

to 13 significant digits?

- $f(x)=p(x)^{N}$ satisfies the ODE $p(x) f^{\prime}(x)-N p^{\prime}(x) f(x)=0$.

■ The coefficients satisfy

$$
\begin{gathered}
r 123:=\{u(1)=3500, u(2)=6124750, u(3)=7144958500, u(4)=6251073531125, \\
u(5)=4375037588062700, u(6)=2551584931812376500, u(0)=1, \\
(n-6000) u(n)+(3 n-14497) u(n+1)+(5 n-19990) u(n+2) \\
+(6 n-19482) u(n+3)+(6 n-16476) u(n+4)+(5 n-9975) u(n+5) \\
\\
+(3 n-3482) u(n+6)+(n+7) u(n+7)\}
\end{gathered}
$$

■ The full coefficient of x^{3000} could be computed by [Flajolet, Salvy, 1997] in 15sec!

SeqTerm in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite.

SeqTerm in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite.

Sketch of proof.

The vector space spanned over $\mathbb{K}(x)$ by $\left(f^{(i)}(x)\right)_{i \geq 0}$ is finite-dimensional over $\mathbb{K}(x, a(x))$ which is itself finite-dimensional over $\mathbb{K}(x)$.

SEqTERM in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite. In particular, $a(x)^{n}$ satisfies a linear ODE of order and degree independent of n.

Sketch of proof.

The vector space spanned over $\mathbb{K}(x)$ by $\left(f^{(i)}(x)\right)_{i \geq 0}$ is finite-dimensional over $\mathbb{K}(x, a(x))$ which is itself finite-dimensional over $\mathbb{K}(x)$.
Set $g(x)=x^{n}$ which satisfies $x g^{\prime}(x)=n g(x)$.
For example: if $\varphi(x)=\left(x+\sqrt{x^{2}+4}\right) / 2$ then $y(x)=\varphi(x)^{n}$ satisfies

$$
\left(x^{2}+4\right) y^{\prime \prime}(x)+x y^{\prime}(x)-n^{2} y(x)=0
$$

SeqTerm in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite. In particular, $a(x)^{n}$ satisfies a linear ODE of order and degree independent of n.

■ Recall: If $\left(u_{n}(x)\right)_{n \geq 0}$ is polynomial C-finite then:

$$
u_{n}(x)=q_{1}(n, x) a_{1}(x)^{n}+\cdots+q_{k}(n, x) a_{k}(x)^{n}
$$

SeqTerm in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite. In particular, $a(x)^{n}$ satisfies a linear ODE of order and degree independent of n.

■ Recall: If $\left(u_{n}(x)\right)_{n \geq 0}$ is polynomial C-finite then:

$$
u_{n}(x)=q_{1}(n, x) a_{1}(x)^{n}+\cdots+q_{k}(n, x) a_{k}(x)^{n}
$$

■ Hence $u_{n}(x)$ satisfies a "small" ODE (degree and order independent of n).

SeqTerm in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}}(x)$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite. In particular, $a(x)^{n}$ satisfies a linear ODE of order and degree independent of n.

- Recall: If $\left(u_{n}(x)\right)_{n \geq 0}$ is polynomial C-finite then:

$$
u_{n}(x)=q_{1}(n, x) a_{1}(x)^{n}+\cdots+q_{k}(n, x) a_{k}(x)^{n} .
$$

- Hence $u_{n}(x)$ satisfies a "small" ODE (degree and order independent of n).

■ Write $u_{N}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$. Then: $\left(c_{k}\right)_{k \geq 0}$ satisfies "small" recursion.

SeqTerm in $O(N)$

Lemma

Let $a(x) \in \overline{\mathbb{K}}(x)$ and let $g(x)$ be D-finite. Then $f(x)=g(a(x))$ is D-finite. In particular, $a(x)^{n}$ satisfies a linear ODE of order and degree independent of n.

- Recall: If $\left(u_{n}(x)\right)_{n \geq 0}$ is polynomial C-finite then:

$$
u_{n}(x)=q_{1}(n, x) a_{1}(x)^{n}+\cdots+q_{k}(n, x) a_{k}(x)^{n} .
$$

- Hence $u_{n}(x)$ satisfies a "small" ODE (degree and order independent of n).

■ Write $u_{N}(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots$. Then: $\left(c_{k}\right)_{k \geq 0}$ satisfies "small" recursion.
■ Compute initial terms and unroll \Rightarrow all c_{i} in $O(N)$ arithmetic operations $\Rightarrow u_{N}(x)$ in $O(N)$ arithmetic complexity.

What if unrolling is impossible?

- Consider $u_{n}=2^{n}+x^{n}+x^{2 n}$.

What if unrolling is impossible?

■ Consider $u_{n}=2^{n}+x^{n}+x^{2 n}$.
■ Small ODE: $x^{2} u_{n}^{\prime \prime \prime}(x)-3 x(n-1) u_{n}^{\prime \prime}(x)+(2 n-1)(n-1) u_{n}^{\prime}(x)=0$,
■ For $u_{n}(x)=\sum_{k \geq 0} c_{n, k} x^{k}$ obtain the recursion: $(2 n-k)(n-k) k c_{n, k}=0$.

What if unrolling is impossible?

- Consider $u_{n}=2^{n}+x^{n}+x^{2 n}$.
- Small ODE: $x^{2} u_{n}^{\prime \prime \prime}(x)-3 x(n-1) u_{n}^{\prime \prime}(x)+(2 n-1)(n-1) u_{n}^{\prime}(x)=0$,

■ For $u_{n}(x)=\sum_{k \geq 0} c_{n, k} x^{k}$ obtain the recursion: $(2 n-k)(n-k) k c_{n, k}=0$.

- Problem: Cannot unroll (for $k=0$ and $k=N$ and $k=2 N$)!

What if unrolling is impossible?

- Consider $u_{n}=2^{n}+x^{n}+x^{2 n}$.
- Small ODE: $x^{2} u_{n}^{\prime \prime \prime}(x)-3 x(n-1) u_{n}^{\prime \prime}(x)+(2 n-1)(n-1) u_{n}^{\prime}(x)=0$,

■ For $u_{n}(x)=\sum_{k \geq 0} c_{n, k} x^{k}$ obtain the recursion: $(2 n-k)(n-k) k c_{n, k}=0$.

- Problem: Cannot unroll (for $k=0$ and $k=N$ and $k=2 N$)!

■ Solution: Define $v_{n}(x)=u_{n}(x+1)$. Then for $v_{n}(x)=\sum_{k \geq 0} d_{n, k} x^{k}$:

$$
(k+1)(k+2) d_{n, k+2}-(k+1)(3 n-2 k-1) d_{n, k+1}+(2 n-k)(n-k) d_{n, k}=0
$$

Compute $v_{n}(x)$, then compute u_{N} and $u_{2 N}$ via $c_{M, i}=\sum_{k \geq 0} d_{M, k}\binom{k}{i}(-1)^{k-i}$.

- This strategy works in general because the ODE has finitely many singularities.

SeqTerm in $O(N)$ in practice

- Goal: Find small ODE for $u_{N}(x)$ efficiently.

SeqTerm in $O(N)$ in practice

- Goal: Find small ODE for $u_{N}(x)$ efficiently.

■ Using Cauchy's integral formula write:

$$
u_{n}(x)=\frac{1}{2 \pi i} \oint_{|y|=\epsilon} \frac{U(x, y)}{y^{n+1}} d y
$$

SboTerm in $O(N)$ in practice

■ Goal: Find small ODE for $u_{N}(x)$ efficiently.
■ Using Cauchy's integral formula write:

$$
u_{n}(x)=\frac{1}{2 \pi i} \oint_{|y|=\epsilon} \frac{U(x, y)}{y^{n+1}} d y
$$

- Creative Telescoping finds:

$$
(\underbrace{p_{k}(n, x) \partial_{x}^{k}+\cdots+p_{0}(n, x)}_{\text {"Telescoper" }}) \frac{U(x, y)}{y^{n+1}}=\partial_{y}(\underbrace{C(n, x, y)}_{\text {"Certificate" }}) .
$$

■ By Cauchy's integral theorem: $\left(\left(p_{k}(n, x) \partial_{x}^{k}+\cdots+p_{0}(n, x)\right) u_{n}=0\right.$.

SboTerm in $O(N)$ in practice

■ Goal: Find small ODE for $u_{N}(x)$ efficiently.
■ Using Cauchy's integral formula write:

$$
u_{n}(x)=\frac{1}{2 \pi i} \oint_{|y|=\epsilon} \frac{U(x, y)}{y^{n+1}} d y
$$

- Creative Telescoping finds:

$$
(\underbrace{p_{k}(n, x) \partial_{x}^{k}+\cdots+p_{0}(n, x)}_{\text {"Telescoper" }}) \frac{U(x, y)}{y^{n+1}}=\partial_{y}(\underbrace{C(n, x, y)}_{\text {"Certificate" }}) .
$$

■ By Cauchy's integral theorem: $\left(\left(p_{k}(n, x) \partial_{x}^{k}+\cdots+p_{0}(n, x)\right) u_{n}=0\right.$.

- Can prove for reduction based Creative Telescoping:

Order and degree of the Telescoper are independent of n.

Algorithm by example: Fibonacci polynomials
■ $F_{n+2}(x)=x F_{n+1}(x)+F_{n}(x)$ with $F_{0}(x)=0, F_{1}(x)=1$.

- Generating function:

$$
\sum_{k \geq 0} F_{k} y^{k}=\frac{1}{1-x y-y^{2}}
$$

- Hence:

$$
F_{n}=\frac{1}{2 \pi i} \oint_{|y|=\epsilon} \frac{1}{\left(1-x y-y^{2}\right) y^{n+1}} \mathrm{~d} y
$$

BP: Time for binary powering.
UR+IT: Time for unrolling + computing initial terms.

Summary and future work

- SeqTerm, BivModPow and PolMatPow can be solved in complexity $O(N)$.
- $M(x)^{N}$ can be computed faster than with binary powering, in practice and theory.
- Many future works:
- More detailed complexity (w.r.t. r,d).
- The K th coefficient of the N th term.
- More general sequences.
- Connection to the Jordan-Chevalley decomposition.

Bonus: More timings

BP: Time for binary powering.
UR+IT: Time for unrolling + computing initial terms.

Bonus: Some precomputation timings

	d	Maple				$\begin{gathered} \text { Sage } \\ \text { ct } \end{gathered}$	Mathematica			ℓ	d_{n}		Want $M(x)^{N}$, with $M(x) \in \mathbb{K}[x]^{r \times r}$, degree d.
r		redct	HT	ZB	c_t		FCT	CT	HCT				
	2	0.0	0.1	0.0	0.1	0.5	0.2	0.2	0.2	2	2	16	
2	4	0.0	0.0	0.0	0.1	0.6	0.4	0.4	0.3	2	2	34	Seconds for Telescoper of
2	6	0.0	0.0	0.0	0.1	0.6	0.7	0.5	0.5	2	2	52	
	8	0.0	0.0	0.0	0.1	0.8	1.0	0.7	0.7	2	2	70	$P(x, y)$
3	1	0.0	0.2	0.0	0.5	2.0	2.0	1.3	1.3	3	5	24	$\overline{y^{n+1} Q(x, y)}$,
	2	0.0	0.1	0.8	3.4	3.1	4.0	2.6	2.5	3	5	54	
	3	0.1	0.2	0.8	9.3	5.6	10	5.7	5.4	3	5	84	$Q(x, y)$ is the char poly.
	4	0.1	0.5	18	19	8.2	17	9.4	8.9	3	5	114	$Q(x, y)$ is the char. poly.
	5	0.2	1.1	5.1	32	12	25	14	14	3	5	144	redct: [Bostan, Chyzak,
	6	0.5	1.7	9.8	49	17	35	19	20	3	5	174	Lairez, Salvy,'18]
4	1	0.4	2.9	23	117	20	31	25	25	4	9	58	
	2	1.7	17	410	749	45	101	96	95	4	9	128	ermite Telescop
	3	4.4	43			89	295	376	373	4	9	198	[Bostan, Lairez, Salvy,'13].
	4	12	82			172	388	752	693	4	9	268	Zeilberger (ZB): [DETools].
	5	18	128			280	635			4	9	338	c_t: [Chyzak, '00].
5	1	11	34	538		163	847	780		5	14	115	ct: [Kauers,Mezzarobba,'19].
	2	64	183			515				5	14	250	CT: [Koutschan, '10].
	3	159	526							5	14	385	CT: [Koutschan, 10].

