

Introduction	Main result	Practice and timings	Conclusion
•00	00000	000	O
An open problem			

- Consider Fibonacci numbers: $F_0, F_1, \dots \in \mathbb{Z}$.
- The bit-size of F_N is in $\Theta(N)$.

• Can compute
$$F_N = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^N \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 in $O(M_{\mathbb{Z}}(N))$ binary operations.

Introduction	Main result	Practice and timings	Conclusion
•00	00000	000	O
An open problem			

- Consider Fibonacci numbers: $F_0, F_1, \dots \in \mathbb{Z}$.
- The bit-size of F_N is in $\Theta(N)$.

• Can compute
$$F_N = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^N \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 in $O(M_{\mathbb{Z}}(N))$ binary operations.

Open problem

Can we compute $F_N \in \mathbb{Z}$ in O(N) binary operations?

Fibonacci polynomials:

$$F_0(x)=0,$$
 $F_1(x)=1$ and $F_{n+2}(x)=xF_{n+1}(x)+F_n(x),$ for $n\geq 0$

Euclidean division for bivariate polynomials:

$$R_n(x,y) = y^n \bmod y^2 - xy - 1$$

Powers of a polynomial matrix:

$$M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}^n$$

Introduction Main result Practice and timings Conclusion 000 0000 000 0

Fibonacci polynomials:

$$F_0(x) = 0, F_1(x) = 1$$
 and $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$, for $n \ge 0$

 $F_9(x) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8$ and $F_{10}(x) = 5x + 20x^3 + 21x^5 + 8x^7 + x^9$.

Euclidean division for bivariate polynomials:

$$R_n(x, y) = y^n \mod y^2 - xy - 1$$

$$R_{10}(x, y) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8 + (5x + 20x^3 + 21x^5 + 8x^7 + x^9)y.$$
Powers of a polynomial matrix:

$$M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}^n$$

$$M_{10}(x) = \begin{pmatrix} 1 + 15x^2 + 35x^4 + 28x^6 + 9x^8 + x^{10} & 5x + 20x^3 + 21x^5 + 8x^7 + x^9 \\ 5x + 20x^3 + 21x^5 + 8x^7 + x^9 & 1 + 10x^2 + 15x^4 + 7x^6 + x^8 \end{pmatrix}$$

Introduction	Main result	Practice and timings	Conclusion
000	00000	000	0
Polynomial case	ح		
i orynonnar east	9		

Fibonacci polynomials:

$$F_0(x) = 0, F_1(x) = 1$$
 and $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$, for $n \ge 0$

 $F_9(x) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8$ and $F_{10}(x) = 5x + 20x^3 + 21x^5 + 8x^7 + x^9$.

Euclidean division for bivariate polynomials:

$$R_n(x,y) = y^n \mod y^2 - xy - 1$$

$$R_{10}(x,y) = 1 + 10x^2 + 15x^4 + 7x^6 + x^8 + (5x + 20x^3 + 21x^5 + 8x^7 + x^9)y.$$
Powers of a polynomial matrix:

$$M_n(x) = \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}^n$$

$$M_{10}(x) = \begin{pmatrix} 1 + 15x^2 + 35x^4 + 28x^6 + 9x^8 + x^{10} & 5x + 20x^3 + 21x^5 + 8x^7 + x^9 \\ 5x + 20x^3 + 21x^5 + 8x^7 + x^9 & 1 + 10x^2 + 15x^4 + 7x^6 + x^8 \end{pmatrix}$$

Question

Can we compute $F_N, R_N, M_N \in \mathbb{K}[x]$ in O(N) arithmetic operations?

Introduction	Main result 00000	Practice and timings	Conclusion O
How to compute F_N	(x) or $R_N(x, y)$ or M_N	$_{l}(x)?$	

• From the definition: $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$.

Introduction	Main result 00000	Practice and timings	Conclusion O
How to compute F_N	(x) or $R_N(x,y)$ or M_Λ	(x)?	

• From the definition: $F_{n+2}(x) = xF_{n+1}(x) + F_n(x)$.

Introduction	Main result	Practice and timings	Conclusion
000	00000	000	0

$$M_n(x) = \begin{cases} M_{\frac{n}{2}}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases}$$

Introduction	Main result	Practice and timings	Conclusion
000	00000	000	0

$$M_n(x) = \begin{cases} M_{\frac{n}{2}}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases}$$

$$O(\mathsf{M}(N)) = O(N \log(N))$$

Introduction	Main result	Practice and timings	Conclusion
000	00000	000	0

$$M_n(x) = \begin{cases} M_{\frac{n}{2}}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases} \quad O(\mathsf{M}(N)) = O(N \log(N))$$

• Write $F_N(x) = f_0 + f_1 x + \cdots + f_N x^N$. Then $(f_k)_{k\geq 0}$ satisfy:

$$f_{k+2} = rac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_k \quad ext{ for } k \geq 0,$$

with $(f_0, f_1) = (1, 0)$ for odd N and $(f_0, f_1) = (0, N/2)$ for even N.

Introduction	Main result	Practice and timings	Conclusion
000	00000	000	0

$$M_n(x) = \begin{cases} M_{\frac{n}{2}}(x)^2 & \text{if } n \text{ even,} \\ M(x) \cdot M_{\frac{n-1}{2}}(x)^2 & \text{if } n \text{ odd.} \end{cases} \quad O(\mathsf{M}(N)) = O(N \log(N))$$

• Write $F_N(x) = f_0 + f_1 x + \cdots + f_N x^N$. Then $(f_k)_{k\geq 0}$ satisfy:

$$f_{k+2} = rac{(N+k+1)(N-k-1)}{4(k+1)(k+2)} f_k \quad ext{ for } k \geq 0, \qquad rac{O(N)}{2}$$

with $(f_0, f_1) = (1, 0)$ for odd N and $(f_0, f_1) = (0, N/2)$ for even N.

Introduction	Main result	Practice and timings	Conclusion
000	●0000		O
Polynomial C-fi	nite sequences		

A polynomial C-finite sequence $(u_n(x))_{n\geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$u_{n+r}(x) = c_{r-1}(x)u_{n+r-1}(x) + \cdots + c_0(x)u_n(x),$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_0(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$.

			0
Introduction	Main result ●0000	Practice and timings	Conclusion

Polynomial C-finite sequences

A polynomial C-finite sequence $(u_n(x))_{n\geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$u_{n+r}(x) = c_{r-1}(x)u_{n+r-1}(x) + \cdots + c_0(x)u_n(x),$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_0(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$. The generating function is rational:

$$\sum_{k\geq 0} u_k(x)y^k = \frac{P(x,y)}{y^r Q(x,1/y)} \in \mathbb{K}(x,y)$$

Introduction Main result Practice and timings	Conclusion

Polynomial C-finite sequences

A polynomial C-finite sequence $(u_n(x))_{n\geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$u_{n+r}(x) = c_{r-1}(x)u_{n+r-1}(x) + \cdots + c_0(x)u_n(x),$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_0(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$. The generating function is rational:

$$\sum_{k\geq 0} u_k(x)y^k = \frac{P(x,y)}{y^r Q(x,1/y)} \in \mathbb{K}(x,y)$$

• For some $a_1(x), \ldots, a_k(x) \in \overline{\mathbb{K}(x)}$ and $q_i(n, x) \in \mathbb{K}(a_1(x), \ldots, a_n(x))[n]$: $u_n(x) = q_1(n, x)a_1(x)^n + \cdots + q_k(n, x)a_k(x)^n$

Introduction 000	Main result •0000	Practice and timings	Conclusion O
Polynomial C-	finite sequences		
		<i>b</i> 1	

A polynomial C-finite sequence $(u_n(x))_{n\geq 0} \in \mathbb{K}[x]^{\mathbb{N}}$ satisfies a recurrence

$$u_{n+r}(x) = c_{r-1}(x)u_{n+r-1}(x) + \cdots + c_0(x)u_n(x),$$

of some order $r \in \mathbb{N}$ and polynomial coefficients $c_0(x), \ldots, c_{r-1}(x) \in \mathbb{K}[x]$. The generating function is rational:

$$\sum_{k\geq 0}u_k(x)y^k=rac{P(x,y)}{y^rQ(x,1/y)}\in\mathbb{K}(x,y)$$

For some $a_1(x), \ldots, a_k(x) \in \overline{\mathbb{K}(x)}$ and $q_i(n, x) \in \mathbb{K}(a_1(x), \ldots, a_n(x))[n]$:

$$u_n(x) = q_1(n,x)a_1(x)^n + \cdots + q_k(n,x)a_k(x)^n$$

$$u_n(x) = \begin{pmatrix} 0 & \dots & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_{r-1}(x) & c_{r-2}(x) & \dots & c_1(x) & c_0(x) \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}^n \cdot \begin{pmatrix} u_{r-1}(x) \\ \vdots \\ u_0(x) \end{pmatrix}$$

Main result

Practice and timings

Conclusior 0

Theorem (Bostan, Neiger, Y., 2023)

- Let $d, r \in \mathbb{N}$. There exists an algorithm solving in O(N) operations (\pm, \times, \div) in \mathbb{K} :
- SEQTERM: Given a polynomial C-finite sequence (u_n(x))_{n≥0} of order and degree at most r and d, compute the Nth term u_N(x).
- BIVMODPOW: Given polynomials Q(x, y) and P(x, y) in K[x, y] of degrees in y and x at most r and d, with P(x, y) monic in y, compute Q(x, y)^N mod P(x, y).
- POLMATPOW: Given a square polynomial matrix M(x) over K[x] of size and degree at most r and d, compute M(x)^N.

Main result

Practice and timings

Conclusior 0

Theorem (Bostan, Neiger, Y., 2023)

- Let $d, r \in \mathbb{N}$. There exists an algorithm solving in O(N) operations (\pm, \times, \div) in \mathbb{K} :
- SEQTERM: Given a polynomial C-finite sequence (u_n(x))_{n≥0} of order and degree at most r and d, compute the Nth term u_N(x).
- BIVMODPOW: Given polynomials Q(x, y) and P(x, y) in K[x, y] of degrees in y and x at most r and d, with P(x, y) monic in y, compute Q(x, y)^N mod P(x, y).
- POLMATPOW: Given a square polynomial matrix M(x) over K[x] of size and degree at most r and d, compute M(x)^N.

Introduction	Main result	Practice and timings	Conclusion
000	○○●○○	000	O
The case $r = 1$			

$$u_{n+1}(x) = c_0(x)u_n(x) \Rightarrow u_n(x) = c_0(x)^n u_0(x).$$

Introduction 000	Main result ○○●○○	Practice and timings	Conclusion O
The case $r =$	1		
	What is the coefficient of	$u_0(x)^n u_0(x)$. "The SIGSAM challenges": PROBLEM 4 x^{3000} in the expansion of the polynomial $x + 1)^{1000}(x^4 + x^3 + x^2 + x + 1)^{500}$	
	to 13 significant digits?		

Introduction 000	Main result ○○●○○	Practice and timings	Conclusion O
The case $r =$	1		
	What is the coefficient of	$u_0(x)^n u_0(x)$. The SIGSAM challenges": PROBLEM 4 x^{3000} in the expansion of the polynomial $(x + 1)^{1000}(x^4 + x^3 + x^2 + x + 1)^{500}$	
■ f(x) = p	$p(x)^N$ satisfies the ODE $p(x)$	f'(x) - Np'(x)f(x) = 0.	

Introduction 000	Main result 00●00	Practice and timings	Conclusion O
The case $r =$	1		
	What is the coefficient of :	$u(x)^{n}u_{0}(x)$. "The SIGSAM challenges": PROBLEM 4 x^{3000} in the expansion of the polynomial $x + 1)^{1000}(x^{4} + x^{3} + x^{2} + x + 1)^{500}$	
() .	$p(x)^N$ satisfies the ODE $p(x)$)f'(x) - Np'(x)f(x) = 0.	
	u(5) = 4375037588062700,	$\begin{aligned} &24750, u(3) = 7144958500, u(4) = 6251073531125, \\ &u(6) = 2551584931812376500, u(0) = 1, \\ &4497)u(n+1) + (5n-19990)u(n+2) \end{aligned}$	

$$+ (6n - 19482)u(n + 3) + (6n - 16476)u(n + 1) + (6n - 19000)u(n + 2) + (3n - 3482)u(n + 6) + (n + 7)u(n + 7) \}$$

Introduction 000	Main result ○○●○○	Practice and timings	Conclusion O
The case $r = 1$			
$\cdots = \langle \rangle$	What is the coefficient of	$u_0(x)^n u_0(x)$. "The SIGSAM challenges": PROBLEM 4 x^{3000} in the expansion of the polynomial $(x^4 + x^3 + x^2 + x + 1)^{500}$	
 f(x) = p(x The coeffic 	ients satisfy $r123 := \{u(1) = 3500, u(2) = 61$ u(5) = 4375037588062700, (n - 6000)u(n) + (3n - 1)	(x)f'(x) - Np'(x)f(x) = 0. $ (24750, u(3) = 7144958500, u(4) = 6251073531125, $ $ (u(6) = 2551584931812376500, u(0) = 1, $ $ (14497)u(n+1) + (5n - 19990)u(n+2) $ $ (3n - 16476)u(n+4) + (5n - 9975)u(n+5) $ $ + (3n - 3482)u(n+6) + (n+7)u(n+7)$	

• The full coefficient of x^{3000} could be computed by [Flajolet, Salvy, 1997] in 15sec!

Introduction	Main result	Practice and timings	Conclusion
000	○○○●○		O
SEQTERM in $O(N)$			

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let g(x) be D-finite. Then f(x) = g(a(x)) is D-finite.

Introduction	Main result	Practice and timings	Conclusion
000	○○○●○		O
SEQTERM in $O(N)$			

Let
$$a(x) \in \overline{\mathbb{K}(x)}$$
 and let $g(x)$ be D-finite. Then $f(x) = g(a(x))$ is D-finite.

Sketch of proof.

The vector space spanned over $\mathbb{K}(x)$ by $(f^{(i)}(x))_{i\geq 0}$ is finite-dimensional over $\mathbb{K}(x, a(x))$ which is itself finite-dimensional over $\mathbb{K}(x)$.

Introduction	Main result	Practice and timings	Conclusion
000	○○○●○		O
SEQTERM in $O(N)$			

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let g(x) be D-finite. Then f(x) = g(a(x)) is D-finite. In particular, $a(x)^n$ satisfies a linear ODE of order and degree independent of n.

Sketch of proof.

The vector space spanned over $\mathbb{K}(x)$ by $(f^{(i)}(x))_{i\geq 0}$ is finite-dimensional over $\mathbb{K}(x, a(x))$ which is itself finite-dimensional over $\mathbb{K}(x)$. Set $g(x) = x^n$ which satisfies xg'(x) = ng(x).

For example: if $\varphi(x) = (x + \sqrt{x^2 + 4})/2$ then $y(x) = \varphi(x)^n$ satisfies $(x^2 + 4)y''(x) + xy'(x) - n^2y(x) = 0.$

Introduction	Main result	Practice and timings	Conclusion
000	○○○●○		O
SEQTERM in $O(N)$			

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let g(x) be D-finite. Then f(x) = g(a(x)) is D-finite. In particular, $a(x)^n$ satisfies a linear ODE of order and degree independent of n.

• Recall: If $(u_n(x))_{n\geq 0}$ is **polynomial C-finite** then:

$$u_n(x) = q_1(n,x)a_1(x)^n + \cdots + q_k(n,x)a_k(x)^n.$$

Introduction	Main result	Practice and timings	Conclusion
000	000●0	000	O
SEQTERM in $O(N)$			

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let g(x) be D-finite. Then f(x) = g(a(x)) is D-finite. In particular, $a(x)^n$ satisfies a linear ODE of order and degree independent of n.

• Recall: If $(u_n(x))_{n\geq 0}$ is **polynomial C-finite** then:

$$u_n(x) = q_1(n,x)a_1(x)^n + \cdots + q_k(n,x)a_k(x)^n.$$

• Hence $u_n(x)$ satisfies a "small" ODE (degree and order independent of n).

Introduction	Main result	Practice and timings	Conclusion
000	000●0		O
SEOTERM in $O(N)$			

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let g(x) be D-finite. Then f(x) = g(a(x)) is D-finite. In particular, $a(x)^n$ satisfies a linear ODE of order and degree independent of n.

Recall: If $(u_n(x))_{n\geq 0}$ is **polynomial C-finite** then:

$$u_n(x) = q_1(n,x)a_1(x)^n + \cdots + q_k(n,x)a_k(x)^n.$$

• Hence $u_n(x)$ satisfies a "small" ODE (degree and order independent of n).

• Write $u_N(x) = c_0 + c_1 x + c_2 x^2 + \cdots$. Then: $(c_k)_{k\geq 0}$ satisfies "small" recursion.

Introduction	Main result	Practice and timings	Conclusion
000	000●0	000	O
SEOTERM in $O(N)$			

Let $a(x) \in \overline{\mathbb{K}(x)}$ and let g(x) be D-finite. Then f(x) = g(a(x)) is D-finite. In particular, $a(x)^n$ satisfies a linear ODE of order and degree independent of n.

• Recall: If $(u_n(x))_{n\geq 0}$ is **polynomial C-finite** then:

$$u_n(x) = q_1(n,x)a_1(x)^n + \cdots + q_k(n,x)a_k(x)^n.$$

- Hence $u_n(x)$ satisfies a "small" ODE (degree and order independent of n).
- Write $u_N(x) = c_0 + c_1 x + c_2 x^2 + \cdots$. Then: $(c_k)_{k\geq 0}$ satisfies "small" recursion.
- Compute initial terms and unroll \Rightarrow all c_i in O(N) arithmetic operations

 $\Rightarrow u_N(x)$ in O(N) arithmetic complexity.

Introduction	Main result	Practice and timings	Conclusion
000	0000●		O
What if unroll	ing is impossible?		

• Consider
$$u_n = 2^n + x^n + x^{2n}$$
.

Introduction	Main result	Practice and timings	Conclusion
000	0000●		O
What if unrollin	g is impossible?		

• Consider
$$u_n = 2^n + x^n + x^{2n}$$
.

- **Small ODE**: $x^2 u_n'''(x) 3x(n-1)u_n''(x) + (2n-1)(n-1)u_n'(x) = 0$,
- For $u_n(x) = \sum_{k \ge 0} c_{n,k} x^k$ obtain the recursion: $(2n k)(n k)kc_{n,k} = 0$.

Introduction	<mark>Main result</mark>	Practice and timings	Conclusion
000	0000●		O
What if unrollin	g is impossible?		

• Consider
$$u_n = 2^n + x^n + x^{2n}$$
.

- **Small ODE**: $x^2 u_n'''(x) 3x(n-1)u_n''(x) + (2n-1)(n-1)u_n'(x) = 0$,
- For $u_n(x) = \sum_{k \ge 0} c_{n,k} x^k$ obtain the recursion: $(2n k)(n k)kc_{n,k} = 0$.
- **Problem:** Cannot unroll (for k = 0 and k = N and k = 2N)!

Introduction	Main result	Practice and timings	Conclusion
000	0000●		O
What if unrollir	ng is impossible?		

• Consider
$$u_n = 2^n + x^n + x^{2n}$$
.

- **Small ODE**: $x^2 u_n'''(x) 3x(n-1)u_n''(x) + (2n-1)(n-1)u_n'(x) = 0$,
- For $u_n(x) = \sum_{k\geq 0} c_{n,k} x^k$ obtain the recursion: $(2n-k)(n-k)kc_{n,k} = 0$.
- **Problem:** Cannot unroll (for k = 0 and k = N and k = 2N)!
- Solution: Define $v_n(x) = u_n(x+1)$. Then for $v_n(x) = \sum_{k\geq 0} d_{n,k} x^k$:

 $(k+1)(k+2)d_{n,k+2} - (k+1)(3n-2k-1)d_{n,k+1} + (2n-k)(n-k)d_{n,k} = 0.$

Compute $v_n(x)$, then compute u_N and u_{2N} via $c_{M,i} = \sum_{k>0} d_{M,k} {k \choose i} (-1)^{k-i}$.

This strategy works in general because the ODE has finitely many singularities.

Introduction	Main result	Practice and timings	Conclusion		
000	00000		O		
SEQTERM in $O($	N) in practice				

• Goal: Find small ODE for $u_N(x)$ efficiently.

Introduction	Main result	Practice and timings	Conclusion
000		●○○	O
SEQTERM in C	D(N) in practice		

- Goal: Find small ODE for $u_N(x)$ efficiently.
- Using Cauchy's integral formula write:

$$u_n(x) = \frac{1}{2\pi i} \oint_{|y|=\epsilon} \frac{U(x,y)}{y^{n+1}} \mathrm{d}y.$$

Introduction	Main result	Practice and timings	Conclusion
000	00000	•00	O
SEQTERM in $O(N)$	in practice		

- Goal: Find small ODE for $u_N(x)$ efficiently.
- Using Cauchy's integral formula write:

$$u_n(x) = \frac{1}{2\pi i} \oint_{|y|=\epsilon} \frac{U(x,y)}{y^{n+1}} \mathrm{d}y.$$

• Creative Telescoping finds:

$$\left(\underbrace{p_k(n,x)\partial_x^k + \dots + p_0(n,x)}_{\text{"Telescoper"}}\right)\frac{U(x,y)}{y^{n+1}} = \partial_y\left(\underbrace{C(n,x,y)}_{\text{"Certificate"}}\right)$$

By Cauchy's integral theorem: $((p_k(n,x)\partial_x^k + \cdots + p_0(n,x))u_n = 0.$

Introduction	Main result	Practice and timings	Conclusion
000	00000	•00	O
	$O(\Lambda I)$ is a set in a		

SEQTERM IN O(N) in practice

- Goal: Find small ODE for $u_N(x)$ efficiently.
- Using Cauchy's integral formula write:

$$u_n(x) = \frac{1}{2\pi i} \oint_{|y|=\epsilon} \frac{U(x,y)}{y^{n+1}} \mathrm{d}y.$$

Creative Telescoping finds:

$$\left(\underbrace{p_k(n,x)\partial_x^k + \dots + p_0(n,x)}_{\text{"Telescoper"}}\right)\frac{U(x,y)}{y^{n+1}} = \partial_y\left(\underbrace{C(n,x,y)}_{\text{"Certificate"}}\right)$$

By Cauchy's integral theorem: ((p_k(n, x)∂^k_x + ··· + p₀(n, x))u_n = 0.
 Can prove for reduction based Creative Telescoping:
 Order and degree of the Telescoper are independent of n.

Introduction 000	Main result 00000	Practice and timings ○●○		Conclusion O
Algorithm by ex	ample: Fibonacci po	olynomials		
• $F_{n+2}(x) =$	$xF_{n+1}(x) + F_n(x)$ with $F_n(x)$	$f_0(x) = 0, F_1(x) = 1.$		
 Generating 	function: $\sum_{k\geq 0} F_k y^k$	$^{k}=\frac{1}{1-xy-y^{2}}.$		
Hence:	$F_n = rac{1}{2\pi i} \oint_{ \mathcal{Y} =1}$	$_{\epsilon} \frac{1}{(1-xy-y^2)y^{n+1}} \mathrm{d}y.$		
DEtools[2	Zeilberger](1/(1-x*y-	y^2)/y^n, x, y, Dx);	O(1)	
gfun[diff	$(x^2+4)F_n''(x)^2+3$	$xF'_n(x) + (1 - n^2)F_n(x) = 0$).	
ਊ < ∎ gfun[diff	feqtorec](deq, F(x),	u(k));	O(1)	
Lecol	$4(k+1)(k+2)f_{k+2}$ -	$(n+k+1)(n-k-1)f_k =$	= 0.	
Compute f	f_0, f_1 by binary powering m	od x^2 .	$O(\log(N))$ O(N)	
				11 / 13

Introduction

Main result

Practice and timings

12 r=4.d=2 -+--r=4,d=4 ———— 10 • $M(x) \in \mathbb{K}[x]^{4 \times 4}$. r=4,d=5 r=4,d=6 • Want: $M(x)^N$. r=4,d=7 ----8 BP / (UR+IT) • deg M(x) = 2, ..., 7. • $N = 2^8, 2^{10}, \dots, 2^{22}$. 4 2 0 10 12 18 22 8 14 16 20 24 6 log₂(N)

> BP: Time for binary powering. UR+IT: Time for unrolling + computing initial terms.

• SEQTERM, BIVMODPOW and POLMATPOW can be solved in complexity O(N).

• $M(x)^N$ can be computed faster than with binary powering, in practice and theory.

- Many future works:
 - More detailed complexity (w.r.t. r, d).
 - The *K*th coefficient of the *N*th term.
 - More general sequences.
 - Connection to the Jordan–Chevalley decomposition.

UR+IT: Time for unrolling + computing initial terms.

Introd	u	C	ti	0	I
000					

Main result

Practice and timings

Conclusion

Bonus: Some precomputation timings

		Maple			Sage	Ma	athema	tica	ℓ	d_n	d_x	1	
r	d	redct	ΗT	ZB	c_t	ct	FCT	СТ	НСТ				_
	2	0.0	0.1	0.0	0.1	0.5	0.2	0.2	0.2	2	2	16	-
2	4	0.0	0.0	0.0	0.1	0.6	0.4	0.4	0.3	2	2	34	1
	6	0.0	0.0	0.0	0.1	0.6	0.7	0.5	0.5	2	2	52	-
	8	0.0	0.0	0.0	0.1	0.8	1.0	0.7	0.7	2	2	70	_
	1	0.0	0.2	0.0	0.5	2.0	2.0	1.3	1.3	3	5	24	-
	2	0.0	0.1	0.8	3.4	3.1	4.0	2.6	2.5	3	5	54	
3	3	0.1	0.2	0.8	9.3	5.6	10	5.7	5.4	3	5	84	
	4	0.1	0.5	18	19	8.2	17	9.4	8.9	3	5	114	
	5	0.2	1.1	5.1	32	12	25	14	14	3	5	144	ĥ
	6	0.5	1.7	9.8	49	17	35	19	20	3	5	174	_
	1	0.4	2.9	23	117	20	31	25	25	4	9	58	
	2	1.7	17	410	749	45	101	96	95	4	9	128	-
4	3	4.4	43			89	295	376	373	4	9	198	-
	4	12	82			172	388	752	693	4	9	268	
	5	18	128			280	635			4	9	338	_
	1	11	34	538		163	847	780		5	14	115	-
5	2	64	183			515				5	14	250	-
	3	159	526							5	14	385	-
	4	345								5	14	520	-

• Want $M(x)^N$, with $M(x) \in \mathbb{K}[x]^{r \times r}$, degree d.

- Seconds for Telescoper of

$$\frac{P(x,y)}{y^{n+1}Q(x,y)},$$

Q(x, y) is the char. poly.

redct: [Bostan, Chyzak,
 Lairez, Salvy,'18].
 HermiteTelescoping (HT):
 [Bostan, Lairez, Salvy,'13].
 Zeilberger (ZB): [DETools].
 c_t: [Chyzak, '00].
 ct: [Kauers,Mezzarobba,'19].
 CT: [Koutschan, '10].