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On a class of hypergeometric diagonals

Given a multivariate power series

g(Xla'” 7Xn) - Z gh,...,i,,xi'l "'X,I;n S Ql[Xh' "7XI7]]7
(il,A..,I',,)GN"

define the diagonal Diag(g) as the univariate power series given by

Diag(g) == ) _gj,..jt’
Jj=>0
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Diagonals (n = 2)

g0ax’y* graxtyt @ax?yt g3axPy* gaaxtyt
go,3X0y3 g1,3X1y3 g2,3X2y3 g3,3X3y3 g4’3x4y3
802Xy giaxty? gox®y? g3oxdy? gapxty?
glx.y) = g01X°yt guixtyl g1x®yt g3yt gaaxty?
go,oxoyo gl,oxlyo g2,0x2y0 g370x3y0 g470x4y°
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‘IE!!lI!!!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

m Let g(x,y) =1/(1 —x—y). Then

Diag(g) = Diag (Z (' fj)x"yf) -3 (2> "= (1 4r) 2

ij>0 n>0

Sameforg=1/(1—x—yz)org=1/(1—x — xy — yz).
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m Let g(x,y) =1/(1 —x—y). Then
Diag(g) = Diag (Z (i TJ) xfyf> => <2nn> t" = (1 — 4t)"1/2,
ij>0 n>0

Sameforg=1/(1—-x—yz)org=1/(1—x —xy — yz).
m The Apéry numbers [Straub, 2014]:

n+k . 1
Z%%() ( ) i :Dlag<(1—xl—X2)(1—X3—X4)—X1X2X3X4>'
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Hadamard product

The Hadamard product of two univariate power series:

(h+fit+ht®+ - )x(hg+ht+ht>+ - )=fhy+ fihit +Hht>+ .

8/41



Diagonals
000@00000

Hadamard product

The Hadamard product of two univariate power series:

(h+hAt+ht?+ - )x(ho+ht+ht>+ )=fhy+fiht+hHhht*+ .

For all multivariate power series g(x1,...,xn) and h(y1,...,ym) we have

Diag(g(x1,...,xn) - h(y1,...,ym)) = Diag(g(x1, ..., xn)) * Diag(h(y1,-..,¥Ym))-
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B g(xi,...xn) € Qx1,...,xn] is rational if g = P(x1,...,%,)/Q(x1,...,Xn) for
polynomials P, Q.

m g(x1,...xpn) is algebraic if there exists a non-zero polynomial P(xi, ..., xp, t) such
that P(x1,...,Xn,g) =0.

m f(t) is D-finite (holonomic) if f is the solution of a linear ODE with polynomial
coefficients.

m f(t) € Q[t] is globally bounded if f has non-zero radius of convergence and there
exists «, B € N such that af(ft) € Z[t].
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B g(xi,...xn) € Qx1,...,xn] is rational if g = P(x1,...,%,)/Q(x1,...,Xn) for
polynomials P, Q.

m g(x1,...xpn) is algebraic if there exists a non-zero polynomial P(xi, ..., xp, t) such
that P(x1,...,Xn,g) =0.

m f(t) is D-finite (holonomic) if f is the solution of a linear ODE with polynomial
coefficients.

m f(t) € Q[t] is globally bounded if f has non-zero radius of convergence and there
exists «, B € N such that af(ft) € Z[t].

m DIAG, = {f(t) € Q[t]: 3 rational g(x,...,xn) such that f = Diag(g)}
m DIAG, = {f(t) € Q[t]: 3 algebraic g(x1,...,x,) such that f = Diag(g)}
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Properties, theorems and facts

m The representation of f(t) as the diagonal of some (rational) multivariate function is not
unique.
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Properties, theorems and facts

m The representation of f(t) as the diagonal of some (rational) multivariate function is not
unique.

m If f1(t) and f(t) can be represented as diagonals of rational/algebraic functions, then so
can be fi x f.
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B If g(x1,...,x,) is rational or algebraic, then Diag(g) is D-finite [Lipshitz, 1988].
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Properties, theorems and facts

m The representation of f(t) as the diagonal of some (rational) multivariate function is not
unique.

m If f1(t) and £(t) can be represented as diagonals of rational /algebraic functions, then so
can be fi x f.

m If g(xq,...,x,) is rational, then Diag(g) does not have to rational or algebraic.

m If g(x,y) is rational, then Diag(g) is algebraic [Pélya, 1922].

m If f(t) is algebraic, then there exists a rational bivariate g(x, y), such that f = Diag(g)
[Furstenberg, 1967].

B If g(x1,...,x,) is rational or algebraic, then Diag(g) is D-finite [Lipshitz, 1988].

m If g(xi,...,x,) is rational or algebraic, then f(t) = Diag(g) is globally bounded.
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B If g(x1,...,x,) is rational or algebraic, then Diag(g) is D-finite [Lipshitz, 1988].

m If g(xi,...,x,) is rational or algebraic, then f(t) = Diag(g) is globally bounded.

m f(t) is the diagonal of a rational function if and only if it is the diagonal of an algebraic
function: DIAG, = DIAG, =: DIAG [Denef and Lipshitz, 1987].
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Properties, theorems and facts

m The representation of f(t) as the diagonal of some (rational) multivariate function is not
unique.

m If f1(t) and £(t) can be represented as diagonals of rational /algebraic functions, then so
can be fi x f.

m If g(xq,...,x,) is rational, then Diag(g) does not have to rational or algebraic.

m If g(x,y) is rational, then Diag(g) is algebraic [Pélya, 1922].

m If f(t) is algebraic, then there exists a rational bivariate g(x, y), such that f = Diag(g)
[Furstenberg, 1967].

B If g(x1,...,x,) is rational or algebraic, then Diag(g) is D-finite [Lipshitz, 1988].

m If g(xi,...,x,) is rational or algebraic, then f(t) = Diag(g) is globally bounded.

m f(t) is the diagonal of a rational function if and only if it is the diagonal of an algebraic
function: DIAG, = DIAG, =: DIAG [Denef and Lipshitz, 1987].

m If g(x1,...,x,) is rational, then the coefficient sequence of f(t) = Diag(g) is a multiple
binomial sum. The converse is also true. [Bostan, Lairez, Salvy, 2016]
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Open questions about diagonals

m Describe the set DIAG, i.e. which series f(t) can be written as diagonals of
rational/algebraic multivariate functions g(xi,...,xn)?

m How many variables do we need at least to represent f(t) as the diagonal of some
algebraic/rational g(x1,...,xn)?
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Christol’s conjecture

m Which series f(t) can be written as diagonals of rational/algebraic multivariate
functions g(xi,...,Xn)?
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Christol’s conjecture

m Which series f(t) can be written as diagonals of rational/algebraic multivariate
functions g(xi,...,Xn)?

(C) Conjecture [Christol, 1987]: If a power series f € Q[t] is D-finite and globally
bounded then f € DIAG, i.e. f = Diag(g) for some rational power series
g € Qfx1,..., %]
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Christol’s conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series f € Q[t] is D-finite and globally
bounded then f € DIAG.
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Christol’s conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series f € Q[t] is D-finite and globally
bounded then f € DIAG.

m If 7(t) is algebraic then f is both D-finite and globally bounded. Moreover,
Christol's conjecture holds.
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Christol’s conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series f € Q[t] is D-finite and globally
bounded then f € DIAG.

m If f(t) is algebraic then f is both D-finite and globally bounded. Moreover,
Christol's conjecture holds.

m If 7(t) = f1(t) x f2(t) for algebraic series f1(t) and f(t), then f is both D-finite
and globally bounded. Christol’s conjecture holds again:

f(t) = i x f, = Diag(gi(x1, x2)) * Diag(g2(y1, y2)) = Diag(g1(x1, x2) - g2(y1,¥2))-
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Christol’s conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series f € Q[t] is D-finite and globally
bounded then f € DIAG.
m If f(t) is algebraic then f is both D-finite and globally bounded. Moreover,
Christol's conjecture holds.
m If 7(t) = f1(t) x f2(t) for algebraic series f1(t) and f(t), then f is both D-finite
and globally bounded. Christol’s conjecture holds again:

f(t) = i x f, = Diag(gi(x1, x2)) * Diag(g2(y1, y2)) = Diag(g1(x1, x2) - g2(y1,¥2))-

m The Hadamard grade [Allouche and Mendeés-France, 2011] of a power series f(t)
is the least positive integer h = h(f) such that f(t) can be written as the
Hadamard product of h algebraic power series.
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On a class of hypergeometric diagonals

Let (x); = x(x +1)---(x 4+ j — 1) be the rising factorial.
The (generalized) hypergeometric function ,F4 with rational parameters ay, ..., a, and
b1,. .., bq is the univariate power series in Q[t] defined by

o s (@) () P
oFa(lat,- -, ap, [br, -, bli ) : j;(bl)f"'(bq)f v
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On a class of hypergeometric diagonals

Let (x); = x(x +1)---(x 4+ j — 1) be the rising factorial.
The (generalized) hypergeometric function ,F4 with rational parameters ay, ..., a, and
b1,. .., bq is the univariate power series in Q[t] defined by

o s (@) () P
oFa(lat,- -, ap, [br, -, bli ) : j;(bl)f“'(bq)f v

The height of such a hypergeometric function is given by
h={1<j<q+1l|beZ}-[{1<j<placZ}l,
where bg1 = 1.
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Examples

m For all a € Q we have 1Fo([a];[;t) =1+ §t+ a'(1'_"+J2r1)152+~- =(1-1t)°.
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m For all a € Q we have 1Fo([a];[;t) =1+ §t+ a.(la+—£1)t2 +o=(1—-1t)2
moF([1,1];]2];t) = —In(1 — t)/t.
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m For all a € Q we have 1Fp([a];[;t) =1+ % t+a(a+1) +--=(1-1t)""
mof([1,1];]2]:t) = —In(1 — t)/t.

L 17173 _ gy (13)-(=1/6) - (1/3)(4/3) - (~1/6)(5/6)
2F1({§’_5]’[§}’t>_1+ B2 1 T (3/2)(5/2) 1-2 £+
IR AR e v
_ ! ,

15 /41



Hypergeometric Functions
oooooooo

m For all a € Q we have 1Fp([a];[;t) =1+ % t+a(a+1) +--=(1-1t)""
mof([1,1];]2]:t) = —In(1 — t)/t.

L 17173 _ gy (13)-(=1/6) - (1/3)(4/3) - (~1/6)(5/6)
2F1({§’_5]’[§}’t>_1+ B2 1 T (3/2)(5/2) 1-2 £+
IR AR e v
_ ! ,

m 3F([1,1,1];[2,2]; 8) = Lia(£)/t = Yoy Lor

15 /41



Hypergeometric Functions
oooooooo

m For all a € Q we have 1Fp([a];[;t) =1+ % t+a(a+1) +--=(1-1t)""
mof([1,1];]2]:t) = —In(1 — t)/t.

L 17173 _ gy (13)-(=1/6) - (1/3)(4/3) - (~1/6)(5/6)
2F1({§’_5]’[§}’t>_1+ B2 1 T (3/2)(5/2) 1-2 £+
IR AR e v
_ ! ,

m 3F([1,1,1];[2,2]; 8) = Lia(£)/t = Yoy Lor

15 /41



Hypergeometric Functions
00@00000

Properties of hypergeometric functions

B pi1Fg+i([at, ..., ap, ¢, [br, ..., bg, clit) = pFg([a1, ..., ap), [b1, ..., bgl; t).
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Properties of hypergeometric functions

B pi1Fg+i([at, ..., ap, ¢, [br, ..., bg, clit) = pFg([a1, ..., ap), [b1, ..., bgl; t).
m It holds that

o Fai([a1, ... ap ], [b1s .o, bgi]i t) * o Fap([C1s- - -5 Cpol, [dhs - - -, dgo]i B)
= p1+p2Fq1+q2+1([31, -veyd8p, Cly e .,sz], [bl,. cey bqula .. '>dq27 1]; t).
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Properties of hypergeometric functions

B pi1Fg+i([at, ..., ap, ¢, [br, ..., bg, clit) = pFg([a1, ..., ap), [b1, ..., bgl; t).
m It holds that

o Fai([a1, ... ap ], [b1s .o, bgi]i t) * o Fap([C1s- - -5 Cpol, [dhs - - -, dgo]i B)
= p1+p2Fq1+q2+1([31, -veyd8p, Cly e .,sz], [bl,. cey bqudlv .. '>dq27 1]; t).

m All hypergeometric functions are D-finite.
m ,F4 is not a polynomial and globally bounded = q = p — 1.

m The case when ,Fg([a1,. .., ap), [b1,. .., bg]; t) is algebraic is completely classified
[Schwarz, 1873; Beukers and Heckman, 1989]
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Algebraicity of the hypergeometric function

Theorem (Interlacing criterion: Beukers and Heckman, 1989)

Assume that the rational parameters {ay,...,ap} and {by,...,bp_1,bp =1} are
disjoint modulo 7. Let N be their common denominator. Then

PFP*1([31’ coey aP]v [blv s bpfl]; t)

is algebraic if and only if for all 1 < r < N with gcd(r, N) = 1 the numbers
{exp(2miraj),1 < j < p} and {exp(2mirb;),1 < j < p} interlace on the unit circle
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Interlacing criterion in practice |

m Take f(t) =3F2([1/4,3/8,7/8],[1/3,2/3]; t). Is f(t) algebraic?
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Interlacing criterion in practice |
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m Common denominator of the parameters: N = 24,
m We have ¢(24) = 8, and each r € {1,5,7,11,13,17,19,23} =: S is coprime to 24.
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G@@@QQQ@

) is algebraic.
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Global boundedness of the hypergeometric function

Theorem (Christol, 1986)

Assume that the rational parameters {ay,...,ap} and {b1,...,bp_1,bp, =1} are
disjoint modulo 7Z. Let N be their common denominator. Then

PFP—l([ala ) aP]: [b17 s bP—l]; t)
is globally bounded if and only if for all 1 < r < N with gcd(r, N) = 1, one encounters

more numbers in {exp(2mira;),1 < j < p} than in {exp(2mirb;),1 < j < p} when
running through the unit circle from 1 to exp(2mi).
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Interlacing criterion in practice |l

m Is f(t) =3F2([1/9,4/9,5/9],[1/3,1/2]; t) algebraic or at least globally bounded?
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Interlacing criterion in practice |l

m Is f(t) =3F2([1/9,4/9,5/9],[1/3,1/2]; t) algebraic or at least globally bounded?
m Common denominator of the parameters: N = 18.
m We have ¢(18) = 6, and each r € {1,5,7,11,13,17} = S is coprime to 18.
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m We have ¢(18) =6, and each r € {1,5,7,11,13,17} =: S is coprime to 18.

m For each r € S we look at {exp(27ir-1/9),exp(2mir - 4/9), exp(2mir -5/9)} and
{exp(2mir - 1/3), exp(2mir - 1/2), exp(2mir - 1)}.
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Interlacing criterion in practice |l

m Is f(t) =3F2([1/9,4/9,5/9],[1/3,1/2]; t) algebraic or at least globally bounded?

m Common denominator of the parameters: N = 18.

m We have ¢(18) =6, and each r € {1,5,7,11,13,17} =: S is coprime to 18.

m For each r € S we look at {exp(27ir-1/9),exp(2mir - 4/9), exp(2mir -5/9)} and
{exp(2mir - 1/3), exp(2mir - 1/2), exp(2mir - 1)}.

OOOOO0

) is transcendental and not even globally bounded.
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Commercial break

TikZ: \BeHe{30}{1/5}{8/15}{13/15}{1/2}{3/5}

OOOOOOOO
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Commercial break

TikZ: \BeHe{30}{1/5}{8/15}{13/15}{1/2}{3/5}

OOOOOOOO

Maple: ishyperdiagalgebraic([[1/5, 8/15, 13/15], [1/2, 3/511)
>true
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Christol’s conjecture and hypergeometric functions

(C) If a power series f € Q[t] is D-finite and globally bounded then f = Diag(g) for
some algebraic power series g € Q[x1, ..., Xa].

22/41



Hypergeometric Diagonals
©00000000

Christol’s conjecture and hypergeometric functions

(C) If a power series f € Q[t] is D-finite and globally bounded then f = Diag(g) for
some algebraic power series g € Q[x1, ..., Xa].

(C") If a hypergeometric function pFp_1([a1, ..., ap), [b1, ..., bp—1]; t) € Q[t] is
globally bounded then f = Diag(g) for some algebraic power series
g € Qx, ..., xa].
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Christol’s conjecture and hypergeometric functions

a power series f € Q[t] is D-finite and globally bounded then f = Diag(g) for

C) If fe@ D-fi d globally bounded then f =D f
some algebraic power series g € Q[x1, ..., Xa].

(C") If a hypergeometric function pFp_1([a1, ..., ap), [b1, ..., bp—1]; t) € Q[t] is
globally bounded then f = Diag(g) for some algebraic power series
g € Qx, ..., xa].

(C") If 3F([a1, a2, a3], [b1, bo]; t) € Q[t] is globally bounded then f = Diag(g) for
some algebraic power series g € Q[xq, ..., x,]-
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Christol’s conjecture and hypergeometric functions

(C) If a power series f € Q[t] is D-finite and globally bounded then f = Diag(g) for

some algebraic power series g € Q[x1, ..., Xa].

(C") If a hypergeometric function pFp_1([a1, ..., ap), [b1, ..., bp—1]; t) € Q[t] is
globally bounded then f = Diag(g) for some algebraic power series
g € Qlx,..., %]

(C") If 3F([a1, a2, a3], [b1, bo]; t) € Q[t] is globally bounded then f = Diag(g) for
some algebraic power series g € Q[xq, ..., x,]-

(C") Show that

14 5] [1
3F> <[9,9,9] , [3,1} ;729t> =1+60t+ 20475 t> + 9373650t + - - -

is the diagonal of some algebraic g € Q[xi, ..., x,].
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Hypergeometric function and Christol’'s conjecture: resolved cases

Recall that the height of f(t) = pFp—1([a1, ..., ap], [b1,- .., bp—1]; t) is given by
h=H1<j<plbezi-[{1<j<placr,

where b, = 1.
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Hypergeometric function and Christol’'s conjecture: resolved cases

Recall that the height of f(t) = pFp—1([a1, ..., ap], [b1,- .., bp—1]; t) is given by
h—l1<j<plbeZl-[{1<j<p|aez),

where b, = 1.

m Assume that h =1 (all b;'s are non-integer). Then [Beukers and Heckman, 1989;
Christol, 1990]
f algebraic <= f globally bounded.

m Assume that h = p (all b;'s are integer). Then

f(t) = 1Fo([a1], [ 1. 8) x1Fo([aa], [ ], ) % - - x 1Fo([ap], [ ], 2)-

Each 1Fo([a],[],t) = (1 — t)~¥ is algebraic.
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First non-trivial example: 3F,([a, b, c], [d, 1]; t)

m Assume f(t) = 3F2([a, b, c],[d, 1]; t) is globally bounded. Is f(t) a diagonal?
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First non-trivial example: 3F,([a, b, c], [d, 1]; t)

m Assume f(t) = 3F2([a, b, c],[d, 1]; t) is globally bounded. Is f(t) a diagonal?
m We can assume that a, b,c,d € Q\ Z and distinct mod Z. Moreover,
assume 0 < a,b,c,d < 1.
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First non-trivial example: 3F,([a, b, c], [d, 1]; t)

m Assume f(t) = 3F2([a, b, c],[d, 1]; t) is globally bounded. Is f(t) a diagonal?

m We can assume that a, b,c,d € Q\ Z and distinct mod Z. Moreover,
assume 0 < a,b,c,d < 1.

m It always holds that

f(t) = 2F1([a, b], [d]: t) x 1Fo([c], [ ]:£) = 2F1([a, c], [d]; £) * 1 Fo([b], [ ] )
= 2Fi([b, ], [d]; t) x1Fo([a], [ ] 2),

therefore we can assume that each such »>F; is transcendental.
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First non-trivial example: 3F,([a, b, c], [d, 1]; t)

m Assume f(t) = 3F2([a, b, c],[d, 1]; t) is globally bounded. Is f(t) a diagonal?
m We can assume that a, b,c,d € Q\ Z and distinct mod Z. Moreover,

assume 0 < a,b,c,d < 1.
m It always holds that

f(t) = 2Fi([a, b], [d]; t) x1Fo([c], [ ]: t) = 2Fa([a, c], [d]: t) * 1 Fo([b], [ ]; t)
= 2F1([b, c], [d]; t) x 1Fo([al, [ ]; 1),
therefore we can assume that each such »>F; is transcendental.
(C™v) List with 116 such 3F,'s by [Bostan, Boukraa, Christol, Hassani, Maillard, 2011]:

BBCHM = {3F»([1/3,5/9,8/9], [1/2,1]; t), sF2([1 /4, 3/8,5/6], [2/3,1]; t), .. .,
..,3F2([1/9,4/9,5/9],[1/3,1]; 1), ...}
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A class of hypergeometric diagonals

m Main question: when can we write f(t) € Q[t] as the diagonal of some
rational/algebraic g(x1,...,xn) € Qx1,...,xn]?
m First non-trivial /unsolved class:

f(t) = 3F2([a, b, c],[d, 1]; t),

such that f(t) is globally bounded.
m Explicit example [Christol, 1986]:

f(t) = 3F2([1/9,4/9,5/9],[1/3,1]; t).
m List of 116 similar “difficult” examples [BBCHM, 2011].
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A class of hypergeometric diagonals

m Main question: when can we write f(t) € Q[t] as the diagonal of some

rational/algebraic g(x1,...,xn) € Qx1,...,xn]?
m First non-trivial /unsolved class:

f(t) = 3F2([a’ ba C]’ [d7 1]1 t)7

such that f(t) is globally bounded.

m Explicit example [Christol, 1986]:
f(t) = 3F2([1/9,4/9,5/9],[1/3,1]; t).
m List of 116 similar “difficult” examples [BBCHM, 2011].
m Recent progress by [Abdelaziz, Koutschan, Maillard, 2020]:
3F2([1/9,4/9,7/9],[1/3,1];t) and 3F»([2/9,5/9,8/9],[2/3,1]; t)

are diagonals.
25 /41
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Result of Abdelaziz, Koutschan and Maillard, 2020

e )23
3F2(F,f, },F,l];Z?t)zDiag A=x= V)7
9 3 l-x—-y—-=z

)13
, [2,1] o7 t) _ Diag (u) ,
3 l-x—-y—=z
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Result of Abdelaziz, Koutschan and Maillard, 2020

More generally,

3,__2({1—/? 2-R 3—R}7[171_R];27t>:Diag<(1—x—Y)R>,

37 3 7 3 l-x—y—z

for all R € Q.
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Result of Abdelaziz, Koutschan and Maillard, 2020

)13
, [2,1] o7 t) _ Diag (u) _
3 l-x—-y—=z

More generally,

1-R2-R 3—-R
3F2<|: 3 ) 3 ) 3 :|7[171—R],—27t>:Dlag((1+X+y)R(1+X+y+Z)_1)’

for all R € Q.
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Main result |

Theorem (Bostan and Y., 2020)

Let N € N\ {0} and by, ..., by € Q with by # 0. Then
Diag((1 4 x1)? (14 x1 +x0)2 - (1 + x4 --- + xn)V)

is a hypergeometric function.
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Complete identity

Let B(k) = —(bk +---+ bN).

y __( B(k)  B(k)+1 B(k)+N—k> 1N
TA\N—k+UN—k+1 " N—k+1 )» T
B(k) B(k)+1 B(k)+N—k—1>
k. _ _
v —<N i el L T k=1, N—1.
Set vV :=(1,1,...,1) with N — 1 ones and M := N(N + 1)/2. Define
u=[ut, ..., N] and vi=[vi . v

Theorem (Bostan and Y., 2020)
It holds that

Diag((1 4 x1)™ (1 +x1 +x2)? - (L+x1 + -+ xw)™) = mFm-1(u; vi (=N)V1).
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m If N =2 we have

—(R+S) —(R+S5)+1

Diag ((1+x)%(1+x +)°) =aFa( | =5 :

—5} [—(R+5),1] ;4t).
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m If N =2 we have

—(R+S) —(R+S5)+1
2 2 ’

Diag (14 x)%(1 + x+y)%) = 3F2< { —5} [=(R+S),1] ;4t>.

m Hence

Ding (1 + )31 + x+y) %) = 3F2< E % g] ; E 1] ;4t>.
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m If N =2 we have

—(R+S) —(R+S5)+1
2 2 ’

Diag (14 x)%(1 + x+y)%) = 3F2< { —5} [=(R+S),1] ;4t>.

m Hence

Ding (1 + )31 + x+y) %) = 3F2< E % g] ; E 1] ;4t>.

m And

Diag ((1 +x)Y4(1 4+ x +y)_3/4) = 3F2< H, %, %] ; B, 1] ;4t).

29 /41
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m Letting N = 3 we obtain

Diag ((1+x)R(1+x+y)51+x+y+2)7) =
f([Z(RESHT) “(R+S+T)+1 —(RES+T)+2 ~(S+T) ~(S+T)+1 _T}
° 5([ 3 ’ 3 ’ 3 T 2 o

[—(R+5+T) —(R+S+T)+1

—(S+T7),1,1|,;-27t|.
- S (54 T, L1 -2
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m Letting N = 3 we obtain

Diag ((1+x)f(1+x+y)°(1+x+y+2)7) =
~(R+S+T) ~(R+S+T)+1 ~(R+S+T)+2 —(S+T) ~(S+T)+1 _T}
6F5<{ 3 ’ 3 ’ 3 2 2 ’ '
[—(R+5+T) —(R+S+T)+1

— T),1,1|;-=27t|.
-+, S (54 T, L1 -2

m Hence

(A +x+y)° ({1—5 2-5S 3—5] )
| =3F, J[1,1-8];,—27¢].
D1ag<1+x+y+z 3M2 3 '3 ' 3 [ ]
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Main lemma

Let N be a positive integer and by, ..., by € Q such that by # 0. It holds that

[xfl---x,’\‘,"’](1+x1)b1---(1+x1+---+xN)bN

_(bn)(bn-1+tbn—kn) (b1t tby—hky ==k
kn kn—1 ki :
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Proof of main lemma

[Xlkl . -x,l\(,'\’__l1 . X,I\(,’V](l +x)P (X xven)PV A x4+ )Y
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Proof of main lemma

- (1)
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Proof of main lemma

[t xR XL A )P (L x4 o)V (L x4 )P

_ (bn) [ bn-1t+bn — kn
kn kn-1
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Proof of main lemma

[t xR xRV A4 )P (L x4 )PV (L x4 )P

_ (bn) (bn-atby —kn\ (b1t Fbyoitby — kn—kn—1i— - — k2
— \kn kn—1 k1

O]
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Sketch of proof of Main Theorem

m To show:

Diag((1 4 x1)2' (1 4+ x1 +x)2 - (1 +x1 4 -+ xn0)) = mFm_1(u; v; (=N)Ve).
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Sketch of proof of Main Theorem

m To show:

Diag((1 4 x1)" (14 x1 + %)% - (L4 x1 4+ +xn)™) = mFm-1(u; vi (—N)"t).
m By Lemma:

[t"]Diag((1 4 x1)2 - (L4 x1 + - 4+ xp)?) = <b’/7V> (bl +-+ b/,\7/ — (N - 1)n>.
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Sketch of proof of Main Theorem

m To show:

Diag((1+x1)" (1 +x1 +x)%2 - (1 +x + - +xn)™) = yFm-1(u; v; (=N)V¢).
m By Lemma:

n n

bN>m<b1+-~+bN—(N—1)n>.

[t”]Diag((l + Xl)b1 e (]_ +xg 4+ XN)bN) _ <

m By definition:

u(i)),7

[t mFm—1(u; vi (=N)Vt) = kl)N"NN"%
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ooe

Sketch of proof of Main Theorem

m To show:

Diag((1 4+ x1)” (14 x1 + %)% - (L4 x1 + -+ +xn)™) = mFm-1(u; vi (—N)Vt).

m By Lemma:

n n

bN>__.(b1+-~~+bN—(N—1)n>'

[t”]Diag((l + Xl)b1 e (]_ +xg 4+ XN)bN) _ (

m By definition:

—
<
o~
=
~
3

a2 v: (- N)) = (_I)NHNNHHS&
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Algebraicity of Diag((1 4 x1)b -+ (14 xg + -+ + xy)?)

Corollary

Let f(t) = Diag((1 + x1)2 - (14 xg + - - - + xp)PV), then f is algebraic if and only if
N=2and by €Z, or N =1.

34/41



Discussion
©000000

Algebraicity of Diag((1 4 x1)b -+ (14 xg + -+ + xy)?)

Corollary

Let f(t) = Diag((1 + x1)2 - (14 xg + - - - + xp)PV), then f is algebraic if and only if
N=2and by €Z, or N=1.

Sketch of proof.
mFm—1(u;v;t) = MFM,l([u(l), e u(N)]; [v(l), e V(N_l), 1,1,...,1]; t).
———
N—1 times

We can have at most one cancellation between u(%) and a 1. By Christol’s theorem,
N <2. O

34/41
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Hadamard grade of Diag((1 4 x)? -+ (1 + x3 + - - - + xn)2)

Recall that the Hadamard grade of f(t) is the least positive integer h = h(f) such that
f(t) can be written as the Hadamard product of h algebraic power series.

Corollary

The Hadamard grade of Diag((1 + x1)? -+ (14 xq + - - - 4+ xn)?V) is finite and < N.
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Hadamard grade of Diag((1 4 x)? -+ (1 + x3 + - - - + xn)2)

Recall that the Hadamard grade of f(t) is the least positive integer h = h(f) such that
f(t) can be written as the Hadamard product of h algebraic power series.

Corollary

The Hadamard grade of Diag((1 + x1) -+ (1 4+ xq + - - - 4+ xn)?V) is finite and < N.

mFu—1(u; vit) = vy (u®; v )y Fy—o(u®; v®: )% kg Fo(u™); 5 1), and

0l

35/41



Discussion
0000000

Hadamard grade of Diag((1 4 x)? -+ (1 + x3 + - - - + xn)2)

Corollary

The Hadamard grade of Diag((1 + x1)? -+ (14 xq + - - - 4 xn)V) is finite and < N.

Proof.

mFv—1(u;vit) = Py (U v sy Fyo(@; v t) % oxg Fo(u™; 5 £),  and

N—k+1FN_k(u(k); y(K). t) = NFN_1<[ B(k) B(k)+1 B(k) + N — k] .

N—k+1"N—k+1"""7 N—-—k+1
[B(k) B(k) +1 B(k)+N—k—1]_t)
N—k’ N—k 7 N — k '

is algebraic.
35,41
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The list BBCHM

(C'v) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116
3F>'s such that:

m 3F([a, b, ], [d, 1]; t) is globally bounded.
m a,b,c,d €Q\Z, distinct mod Z, and 0 < a,b,c,d < 1.
m Each 2Fi([a, b], [d]; t),2F1([a, c], [d]; t), 2 F1([b, c], [d]; t) is transcendental.
m In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list
are diagonals by constructing an explicit representation.
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The list BBCHM

(C'v) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116
3F>'s such that:

m 3F([a, b, ], [d, 1]; t) is globally bounded.
m a,b,c,d €Q\Z, distinct mod Z, and 0 < a,b,c,d < 1.
m Each 2Fi([a, b], [d]; t),2F1([a, c], [d]; t), 2 F1([b, c], [d]; t) is transcendental.
m In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list
are diagonals by constructing an explicit representation.
m New idea: write

f(t) =3F2([a, b, c],[d,1]; t) = 2F1([a, b], [r]; t) * 2F1([c, 1], [d]; t) = - - - =
= 3F2([a’ b, C]’ [d7 r]; t) *1/:0([1’], [ ]; t)
for any r € Q.
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The list BBCHM

(C'v) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116
3F>'s such that:
m 3F([a, b, ], [d, 1]; t) is globally bounded.
m a,b,c,d €Q\Z, distinct mod Z, and 0 < a,b,c,d < 1.
m Each 2Fi([a, b], [d]; t),2F1([a, c], [d]; t), 2 F1([b, c], [d]; t) is transcendental.
m In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list
are diagonals by constructing an explicit representation.
m New idea: write

f(t) =3F2([a, b, c],[d,1]; t) = 2F1([a, b], [r]; t) * 2F1([c, 1], [d]; t) = - - - =
= 3F2([a’ b, C]’ [d7 r]; t) *1/:0([1’], [ ]; t)
for any r € Q.

m If for some r, both 2Fi([a, b], [r]; t) and 2F1([c, r], [d]; t) are algebraic, or
3Fa([a, b, c], [d, r]; t) is algebraic, then f is a diagonal.

36/41
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Example |

m Take £(t) = sF2([1/4,3/8,7/8],[1/3,1]; t).
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Example |

m Take f(t) =3F2([1/4,3/8,7/8],[1/3,1]; t).
m We find that

i =2F([3/8,7/8],[3/4];t) and £ =2Fi([1/4,3/4],[1/3];t)

are algebraic.

37/41



Discussion
0000000

Example |

m Take f(t) =3F2([1/4,3/8,7/8],[1/3,1]; t).
m We find that

i =2F([3/8,7/8],[3/4];t) and £ =2Fi([1/4,3/4],[1/3];t)

are algebraic.
m Hence fi = Diag(gi(x1, x2)) and f, = Diag(g2(y1, y2)) for rational functions
81, 82-
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Example |

m Take f(t) =3F2([1/4,3/8,7/8],[1/3,1]; t).
m We find that

i =2F([3/8,7/8],[3/4];t) and £ =2Fi([1/4,3/4],[1/3];t)

are algebraic.

m Hence fi = Diag(gi(x1, x2)) and f, = Diag(g2(y1, y2)) for rational functions
&1, 82.

m We have

f(t) = f x f, = Diag(g1(x1, x2)) * Diag(g2(y1, y2)) = Diag(gi(x1, x2) - g82(y1, ¥2)),

therefore f is a diagonal.
37/41
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Example Il alternative proof that 3F>([1/9,4/9,7/9],[1/3,1]; t) € DIAG

m Take f(t) =3F2([1/9,4/9,7/9],[1/3,1]; t).
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Example Il alternative proof that 3F>([1/9,4/9,7/9],[1/3,1]; t) € DIAG

m Take f(t) =3F2([1/9,4/9,7/9],[1/3,1]; t).
m We find that
fl = 3F2([1/974/97 7/9]7 [1/37 2/3]; t)

is algebraic.
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Example Il alternative proof that 3F>([1/9,4/9,7/9],[1/3,1]; t) € DIAG

m Take f(t) =3F2([1/9,4/9,7/9],[1/3,1]; t).
m We find that
A = sFa([1/9.4/9,7/9], [1/3,2/3]; t)

is algebraic.

SIOISI0I826
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Example Il alternative proof that 3F>([1/9,4/9,7/9],[1/3,1]; t) € DIAG

m Take f(t) =3F2([1/9,4/9,7/9],[1/3,1]; t).
m We find that
A = sFa([1/9.4/9,7/9], [1/3,2/3]; t)

is algebraic.

SO0 036 10

m Hence f; = Dlag g1 X1,X2) and fr=1Fo [2/3] [] Dlag g2 Yi,y2 ) for
rational functions g1, g.

38/41



0000@00

Example Il alternative proof that 3F>([1/9,4/9,7/9],[1/3,1]; t) € DIAG

m Take f(t) =3F2([1/9,4/9,7/9],[1/3,1]; t).
m We find that
i = 3Fx([1/9,4/9,7/9],[1/3,2/3]; t)
is algebraic.

SO0 036 10

m Hence f; = Diag(g1(x1,x2)) and , = 1Fo([2/3],[ |; t) = Diag(g2(y1, y2)) for
rational functions g1, g.
m We have

f(t) = fi x f, = Diag(g1(x1, x2)) * Diag(g2(y1, y2)) = Diag(gi(x1, x2) - g82(y1,¥2)),

therefore f is a diagonal.
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New Results on the BBCHM list

m By writing
3F([a, b, c], [d,1]; t) = 2F1([a, b], [r]; t) x 2F1([c, r], [d]; ) = .. .,

and searching for r € Q such that 2F1([a, b, [r]; t) and 2F1([c, r],[d]; t) are
algebraic, we can resolve 28 cases of the list. Then 116 — 28 = 88 remain.

m By writing
3F2([a? b, C]? [d7 1]; t) = 3F2([a7 b, C]? [d? r]; t) *1F0([r]7 [ ]; t):

we can resolve 12 more cases. So 88 — 12 = 76 remain.
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m We can also write

3F2([a, b, C], [d, ].]; t) = 3F2([a, b, S], [d, r]; t) *2F1([C, r], [S]; t) =...
=3F([a, b, c],[r,s]; t) x 2F1([r, 5], [d]; ),

however this does not resolve any new cases.
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m We can also write

3F([a, b, c], [d,1]; t) = 3F2([a, b, s], [d, r]; t) x 2F1([c, r], [s]; t) = ...
=3F([a, b, c],[r,s]; t) x 2F1([r, 5], [d]; ),

however this does not resolve any new cases.
m Assuming the Rohrlich-Lang conjecture, [Rivoal and Roques, 2014] could prove

that

124 1
3F <[7,7,7} , {1, 2} ,2401 t) =1+ 112t + 103488 t2 + 139087872 ¢3 + - - -

has infinite Hadamard grade.
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The functions N(N+1)/2FN(N+1)/2_1([U(1), ML v (= N)NE) are
globally bounded and diagonals of algebraic/rational functions.

The main identities of Abdelaziz, Koutschan and Maillard fit in a larger picture.
The function f(t) = Diag((1+x1)? - -+ (1 +x1 + - - + xy)PV) is hypergeometric.
m f(t) is algebraic if and only if N =2 and b, € Z, or N = 1.
m f(t) has finite Hadamard grade.
40 cases of the list BBCHM are resolved.

m Considerations with the Hadamard grade show that we need a new viewpoint.
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Main result 1l

Theorem (Bostan and Y., 2020)

Let N € N\ {0} and by,...,by € Q with by # 0 and by_1 + by = —1. Then for any
be@r

Diag((1 4 x1)?"(1+x +x)2 - (1 +xi 4+ +x0) - (L +x1+ - +2xn-1)P)

is a hypergeometric function.
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Complete identity

Let B(k) = —(bk 4+ -+ by + b).
uk::( B(k) B(k)+1 B(k)+ N — k
N—k+1"N—k+1"""7 N-—k+1
vk::(B(k) B(k)+1 B(k)+N—-—k—-1
N—k' N—k 7 N — k
Set uN=1 = —(by_1+ by +b)/2=(1—b)/2, uN = —by and VN1 = (1,1,...,1)
with N — 1. M := N(N +1)/2 and define v :=[u},...,uN] and v = [v},... vN71].
Theorem (Bostan and Y., 2020)

It holds that

) k=1,...,N-2

), k=1,...,N—2.

Diag((1 + x1)? (1 +x1 +x2)? (L + x4+ +x0) (1 +xa + -+ + 2xny-1)°)
= mFm—1(u;v; (—N)Nt).
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[ ]

ForN=3and R=b;,b=S, b =0, bg = —1:

Diag ((1+x)R(1+x+2y) (1 +x+y+2)7") =

([1—(R+5) 2—-(R+S) 3—(R+S) 1—5} [1—(R+5) 2—(R+S) } )
oF3 , , , : , ,1) =27t ).
3 3 3 2 2 2
generalizes and explains [AKM, 2020]

147 2 (1 —x—2y)¥3
Fa(l|=,=,=|,|1,2];27t) =D
32@9’9’9]’{’3]' ) lag(l—x—y—z

258 5 (A =x—=2y)/3
F(l|5,=,=1,|1,2];27t) =D :
3 2<|:9a979:|7|:76:|1 7t) l&g( ]_—X—y—Z

and

41/8



	Diagonals
	Hypergeometric Functions
	Hypergeometric Diagonals
	Proof

	Discussion
	Conclusion
	
	
	

