On a class of hypergeometric diagonals ${ }^{1} 2$

Sergey Yurkevich

University of Vienna
Friday $25^{\text {th }}$ September, 2020
${ }^{1}$ Joint work with Alin Bostan, arxiv.org/2008.12809
${ }^{2}$ Slides are available at homepage.univie.ac.at/sergey.yurkevich/data/hypergeom_slides.pdf

Bonjour, groupe de travail « Transcendance et combinatoire»!

On a class of hypergeometric diagonals ${ }^{1} 2$

Sergey Yurkevich

University of Vienna
Friday $25^{\text {th }}$ September, 2020
${ }^{1}$ Joint work with Alin Bostan, arxiv.org/2008.12809
${ }^{2}$ Slides are available at homepage.univie.ac.at/sergey.yurkevich/data/hypergeom_slides.pdf

Overview

1 Diagonals
2 Hypergeometric Functions
3 Hypergeometric Diagonals
4 Discussion
5 Conclusion

On a class of hypergeometric diagonals

Given a multivariate power series

$$
g\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}} g_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket,
$$

define the diagonal $\operatorname{Diag}(g)$ as the univariate power series given by

$$
\operatorname{Diag}(g):=\sum_{j \geq 0} g_{j, \ldots, j} t^{j}
$$

Diagonals ($n=2$)

$$
\begin{aligned}
& \begin{array}{llllll}
g_{0,4} x^{0} y^{4} & g_{1,4} x^{1} y^{4} & g_{2,4} x^{2} y^{4} & g_{3,4} x^{3} y^{4} & g_{4,4} x^{4} y^{4} & \ldots
\end{array} \\
& \begin{array}{lllllll}
g_{0,3} x^{0} y^{3} & g_{1,3} x^{1} y^{3} & g_{2,3} x^{2} y^{3} & g_{3,3} x^{3} y^{3} & g_{4,3} x^{4} y^{3} & \ldots
\end{array} \\
& g(x, y)=\begin{array}{llllll}
\\
g_{0,2} x^{0} y^{2} & g_{1,2} x^{1} y^{2} & g_{2,2} x^{2} y^{2} & g_{3,2} x^{3} y^{2} & g_{4,2} x^{4} y^{2} & \ldots \\
g_{0,1} x^{0} y^{1} & g_{1,1} x^{1} y^{1} & g_{2,1} x^{2} y^{1} & g_{3,1} x^{3} y^{1} & g_{4,1} x^{4} y^{1} & \ldots \\
g_{0,0} x^{0} y^{0} & g_{1,0} x^{1} y^{0} & g_{2,0} x^{2} y^{0} & g_{3,0} x^{3} y^{0} & g_{4,0} x^{4} y^{0} & \ldots
\end{array}
\end{aligned}
$$

Diagonals $(n=2)$

$$
\operatorname{Diag}(g(x, y))=\begin{array}{llllll}
g_{0,4} x^{0} y^{4} & g_{1,4} x^{1} y^{4} & g_{2,4} x^{2} y^{4} & g_{3,4} x^{3} y^{4} & g_{4,4} x^{4} y^{4} & \ldots \\
g_{0,3} x^{0} y^{3} & g_{1,3} x^{1} y^{3} & g_{2,3} x^{2} y^{3} & g_{3,3} x^{3} y^{3} & g_{4,3} x^{4} y^{3} & \ldots \\
g_{0,2} x^{0} y^{2} & g_{1,2} x^{1} y^{2} & g_{2,2} x^{2} y^{2} & g_{3,2} x^{3} y^{2} & g_{4,2} x^{4} y^{2} & \ldots \\
g_{0,1} x^{0} y^{1} & g_{1,1} x^{1} y^{1} & g_{2,1} x^{2} y^{1} & g_{3,1} x^{3} y^{1} & g_{4,1} x^{4} y^{1} & \ldots \\
g_{0,0} x^{0} y^{0} & g_{1,0} x^{1} y^{0} & g_{2,0} x^{2} y^{0} & g_{3,0} x^{3} y^{0} & g_{4,0} x^{4} y^{0} & \ldots
\end{array}
$$

$$
\operatorname{Diag}(g(x, y))=g_{0,0}+g_{1,1} t+g_{2,2} t^{2}+g_{3,3} t^{3}+g_{4,4} t^{4}+\cdots
$$

Examples

■ Let $g(x, y)=1 /(1-x-y)$. Then

$$
\operatorname{Diag}(g)=\operatorname{Diag}\left(\sum_{i, j \geq 0}\binom{i+j}{i} x^{i} y^{j}\right)=\sum_{n \geq 0}\binom{2 n}{n} t^{n}=(1-4 t)^{-1 / 2}
$$

Same for $g=1 /(1-x-y z)$ or $g=1 /(1-x-x y-y z)$.

Examples

■ Let $g(x, y)=1 /(1-x-y)$. Then

$$
\operatorname{Diag}(g)=\operatorname{Diag}\left(\sum_{i, j \geq 0}\binom{i+j}{i} x^{i} y^{j}\right)=\sum_{n \geq 0}\binom{2 n}{n} t^{n}=(1-4 t)^{-1 / 2}
$$

Same for $g=1 /(1-x-y z)$ or $g=1 /(1-x-x y-y z)$.
■ The Apéry numbers [Straub, 2014]:

$$
\sum_{n \geq 0} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} t^{n}=\operatorname{Diag}\left(\frac{1}{\left(1-x_{1}-x_{2}\right)\left(1-x_{3}-x_{4}\right)-x_{1} x_{2} x_{3} x_{4}}\right)
$$

Hadamard product

The Hadamard product of two univariate power series:

$$
\left(f_{0}+f_{1} t+f_{2} t^{2}+\cdots\right) \star\left(h_{0}+h_{1} t+h_{2} t^{2}+\cdots\right)=f_{0} h_{0}+f_{1} h_{1} t+f_{2} h_{2} t^{2}+\cdots
$$

Hadamard product

The Hadamard product of two univariate power series:

$$
\left(f_{0}+f_{1} t+f_{2} t^{2}+\cdots\right) \star\left(h_{0}+h_{1} t+h_{2} t^{2}+\cdots\right)=f_{0} h_{0}+f_{1} h_{1} t+f_{2} h_{2} t^{2}+\cdots
$$

Proposition

For all multivariate power series $g\left(x_{1}, \ldots, x_{n}\right)$ and $h\left(y_{1}, \ldots, y_{m}\right)$ we have
$\operatorname{Diag}\left(g\left(x_{1}, \ldots, x_{n}\right) \cdot h\left(y_{1}, \ldots, y_{m}\right)\right)=\operatorname{Diag}\left(g\left(x_{1}, \ldots, x_{n}\right)\right) \star \operatorname{Diag}\left(h\left(y_{1}, \ldots, y_{m}\right)\right)$.

Definitions

- $g\left(x_{1}, \ldots x_{n}\right) \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$ is rational if $g=P\left(x_{1}, \ldots, x_{n}\right) / Q\left(x_{1}, \ldots, x_{n}\right)$ for polynomials P, Q.
- $g\left(x_{1}, \ldots x_{n}\right)$ is algebraic if there exists a non-zero polynomial $P\left(x_{1}, \ldots, x_{n}, t\right)$ such that $P\left(x_{1}, \ldots, x_{n}, g\right)=0$.
- $f(t)$ is D-finite (holonomic) if f is the solution of a linear ODE with polynomial coefficients.
- $f(t) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded if f has non-zero radius of convergence and there exists $\alpha, \beta \in \mathbb{N}$ such that $\alpha f(\beta t) \in \mathbb{Z} \llbracket t \rrbracket$.

Definitions

■ $g\left(x_{1}, \ldots x_{n}\right) \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$ is rational if $g=P\left(x_{1}, \ldots, x_{n}\right) / Q\left(x_{1}, \ldots, x_{n}\right)$ for polynomials P, Q.

- $g\left(x_{1}, \ldots x_{n}\right)$ is algebraic if there exists a non-zero polynomial $P\left(x_{1}, \ldots, x_{n}, t\right)$ such that $P\left(x_{1}, \ldots, x_{n}, g\right)=0$.
- $f(t)$ is D-finite (holonomic) if f is the solution of a linear ODE with polynomial coefficients.
- $f(t) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded if f has non-zero radius of convergence and there exists $\alpha, \beta \in \mathbb{N}$ such that $\alpha f(\beta t) \in \mathbb{Z} \llbracket t \rrbracket$.
■ DIAG $_{r}=\left\{f(t) \in \mathbb{Q} \llbracket t \rrbracket: \exists\right.$ rational $g\left(x_{1}, \ldots, x_{n}\right)$ such that $\left.f=\operatorname{Diag}(g)\right\}$
$■ \operatorname{DIAG}_{a}=\left\{f(t) \in \mathbb{Q} \llbracket t \rrbracket: \exists\right.$ algebraic $g\left(x_{1}, \ldots, x_{n}\right)$ such that $\left.f=\operatorname{Diag}(g)\right\}$

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.
- If $g(x, y)$ is rational, then $\operatorname{Diag}(g)$ is algebraic [Pólya, 1922].

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.
- If $g(x, y)$ is rational, then $\operatorname{Diag}(g)$ is algebraic [Pólya, 1922].
- If $f(t)$ is algebraic, then there exists a rational bivariate $g(x, y)$, such that $f=\operatorname{Diag}(g)$ [Furstenberg, 1967].

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.
- If $g(x, y)$ is rational, then $\operatorname{Diag}(g)$ is algebraic [Pólya, 1922].
- If $f(t)$ is algebraic, then there exists a rational bivariate $g(x, y)$, such that $f=\operatorname{Diag}(g)$ [Furstenberg, 1967].
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $\operatorname{Diag}(g)$ is D-finite [Lipshitz, 1988].

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.
- If $g(x, y)$ is rational, then $\operatorname{Diag}(g)$ is algebraic [Pólya, 1922].
- If $f(t)$ is algebraic, then there exists a rational bivariate $g(x, y)$, such that $f=\operatorname{Diag}(g)$ [Furstenberg, 1967].
■ If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $\operatorname{Diag}(g)$ is D-finite [Lipshitz, 1988].
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $f(t)=\operatorname{Diag}(g)$ is globally bounded.

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.
- If $g(x, y)$ is rational, then $\operatorname{Diag}(g)$ is algebraic [Pólya, 1922].
- If $f(t)$ is algebraic, then there exists a rational bivariate $g(x, y)$, such that $f=\operatorname{Diag}(g)$ [Furstenberg, 1967].
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $\operatorname{Diag}(g)$ is D-finite [Lipshitz, 1988].
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $f(t)=\operatorname{Diag}(g)$ is globally bounded.
- $f(t)$ is the diagonal of a rational function if and only if it is the diagonal of an algebraic function: DIAG $_{r}=$ DIAG $_{a}=:$ DIAG [Denef and Lipshitz, 1987].

Properties, theorems and facts

- The representation of $f(t)$ as the diagonal of some (rational) multivariate function is not unique.
- If $f_{1}(t)$ and $f_{2}(t)$ can be represented as diagonals of rational/algebraic functions, then so can be $f_{1} \star f_{2}$.
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then $\operatorname{Diag}(g)$ does not have to rational or algebraic.
- If $g(x, y)$ is rational, then $\operatorname{Diag}(g)$ is algebraic [Pólya, 1922].
- If $f(t)$ is algebraic, then there exists a rational bivariate $g(x, y)$, such that $f=\operatorname{Diag}(g)$ [Furstenberg, 1967].
■ If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $\operatorname{Diag}(g)$ is D-finite [Lipshitz, 1988].
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational or algebraic, then $f(t)=\operatorname{Diag}(g)$ is globally bounded.
- $f(t)$ is the diagonal of a rational function if and only if it is the diagonal of an algebraic function: DIAG $_{r}=$ DIAG $_{a}=$: DIAG [Denef and Lipshitz, 1987].
- If $g\left(x_{1}, \ldots, x_{n}\right)$ is rational, then the coefficient sequence of $f(t)=\operatorname{Diag}(g)$ is a multiple binomial sum. The converse is also true. [Bostan, Lairez, Salvy, 2016]

Open questions about diagonals

- Describe the set DIAG, i.e. which series $f(t)$ can be written as diagonals of rational/algebraic multivariate functions $g\left(x_{1}, \ldots, x_{n}\right)$?
- How many variables do we need at least to represent $f(t)$ as the diagonal of some algebraic/rational $g\left(x_{1}, \ldots, x_{n}\right)$?

Christol's conjecture

- Which series $f(t)$ can be written as diagonals of rational/algebraic multivariate functions $g\left(x_{1}, \ldots, x_{n}\right)$?

Christol's conjecture

- Which series $f(t)$ can be written as diagonals of rational/algebraic multivariate functions $g\left(x_{1}, \ldots, x_{n}\right)$?
(C) Conjecture [Christol, 1987]: If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f \in \operatorname{DIAG}$, i.e. $f=\operatorname{Diag}(g)$ for some rational power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

Christol's conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f \in$ DIAG.

Christol's conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f \in$ DIAG.

- If $f(t)$ is algebraic then f is both D-finite and globally bounded. Moreover, Christol's conjecture holds.

Christol's conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f \in$ DIAG.
■ If $f(t)$ is algebraic then f is both D-finite and globally bounded. Moreover, Christol's conjecture holds.

- If $f(t)=f_{1}(t) \star f_{2}(t)$ for algebraic series $f_{1}(t)$ and $f_{2}(t)$, then f is both D-finite and globally bounded. Christol's conjecture holds again:

$$
f(t)=f_{1} \star f_{2}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right) \star \operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right) \cdot g_{2}\left(y_{1}, y_{2}\right)\right) .
$$

Christol's conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f \in$ DIAG.
■ If $f(t)$ is algebraic then f is both D-finite and globally bounded. Moreover, Christol's conjecture holds.
■ If $f(t)=f_{1}(t) \star f_{2}(t)$ for algebraic series $f_{1}(t)$ and $f_{2}(t)$, then f is both D-finite and globally bounded. Christol's conjecture holds again:

$$
f(t)=f_{1} \star f_{2}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right) \star \operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right) \cdot g_{2}\left(y_{1}, y_{2}\right)\right) .
$$

- The Hadamard grade [Allouche and Mendès-France, 2011] of a power series $f(t)$ is the least positive integer $h=h(f)$ such that $f(t)$ can be written as the Hadamard product of h algebraic power series.

On a class of hypergeometric diagonals

Let $(x)_{j}:=x(x+1) \cdots(x+j-1)$ be the rising factorial.
The (generalized) hypergeometric function ${ }_{p} F_{q}$ with rational parameters a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} is the univariate power series in $\mathbb{Q} \llbracket t \rrbracket$ defined by

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right):=\sum_{j \geq 0} \frac{\left(a_{1}\right)_{j} \cdots\left(a_{p}\right)_{j}}{\left(b_{1}\right)_{j} \cdots\left(b_{q}\right)_{j}} \frac{t^{j}}{j!}
$$

On a class of hypergeometric diagonals

Let $(x)_{j}:=x(x+1) \cdots(x+j-1)$ be the rising factorial.
The (generalized) hypergeometric function ${ }_{p} F_{q}$ with rational parameters a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} is the univariate power series in $\mathbb{Q} \llbracket t \rrbracket$ defined by

$$
{ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right):=\sum_{j \geq 0} \frac{\left(a_{1}\right)_{j} \cdots\left(a_{p}\right)_{j}}{\left(b_{1}\right)_{j} \cdots\left(b_{q}\right)_{j}} \frac{t^{j}}{j!}
$$

The height of such a hypergeometric function is given by

$$
h=\left|\left\{1 \leqslant j \leqslant q+1 \mid b_{j} \in \mathbb{Z}\right\}\right|-\left|\left\{1 \leqslant j \leqslant p \mid a_{j} \in \mathbb{Z}\right\}\right|,
$$

where $b_{q+1}=1$.

Examples

- For all $a \in \mathbb{Q}$ we have ${ }_{1} F_{0}([a] ;[] ; t)=1+\frac{a}{1} t+\frac{a \cdot(a+1)}{1 \cdot 2} t^{2}+\cdots=(1-t)^{-a}$.

Examples

- For all $a \in \mathbb{Q}$ we have ${ }_{1} F_{0}([a] ;[] ; t)=1+\frac{a}{1} t+\frac{a \cdot(a+1)}{1 \cdot 2} t^{2}+\cdots=(1-t)^{-a}$.
- ${ }_{2} F_{1}([1,1] ;[2] ; t)=-\ln (1-t) / t$.

Examples

- For all $a \in \mathbb{Q}$ we have ${ }_{1} F_{0}([a] ;[] ; t)=1+\frac{a}{1} t+\frac{a \cdot(a+1)}{1 \cdot 2} t^{2}+\cdots=(1-t)^{-a}$.
- ${ }_{2} F_{1}([1,1] ;[2] ; t)=-\ln (1-t) / t$.

$$
\begin{aligned}
{ }_{2} F_{1}\left(\left[\frac{1}{3},-\frac{1}{6}\right] ;\left[\frac{3}{2}\right], t\right) & =1+\frac{(1 / 3) \cdot(-1 / 6)}{(3 / 2) \cdot 1} t+\frac{(1 / 3)(4 / 3) \cdot(-1 / 6)(5 / 6)}{(3 / 2)(5 / 2) \cdot 1 \cdot 2} t^{2}+\cdots \\
& =\frac{(1+\sqrt{t})^{1 / 3}+(1-\sqrt{t})^{1 / 3}}{2}
\end{aligned}
$$

Examples

- For all $a \in \mathbb{Q}$ we have ${ }_{1} F_{0}([a] ;[] ; t)=1+\frac{a}{1} t+\frac{a \cdot(a+1)}{1 \cdot 2} t^{2}+\cdots=(1-t)^{-a}$.
- ${ }_{2} F_{1}([1,1] ;[2] ; t)=-\ln (1-t) / t$.

$$
\begin{aligned}
{ }_{2} F_{1}\left(\left[\frac{1}{3},-\frac{1}{6}\right] ;\left[\frac{3}{2}\right], t\right) & =1+\frac{(1 / 3) \cdot(-1 / 6)}{(3 / 2) \cdot 1} t+\frac{(1 / 3)(4 / 3) \cdot(-1 / 6)(5 / 6)}{(3 / 2)(5 / 2) \cdot 1 \cdot 2} t^{2}+\cdots \\
& =\frac{(1+\sqrt{t})^{1 / 3}+(1-\sqrt{t})^{1 / 3}}{2}
\end{aligned}
$$

- ${ }_{3} F_{2}([1,1,1] ;[2,2] ; t)=\mathrm{Li}_{2}(t) / t=\sum_{n \geq 1} \frac{t^{n-1}}{n^{2}}$.

Examples

- For all $a \in \mathbb{Q}$ we have ${ }_{1} F_{0}([a] ;[] ; t)=1+\frac{a}{1} t+\frac{a \cdot(a+1)}{1 \cdot 2} t^{2}+\cdots=(1-t)^{-a}$.
- ${ }_{2} F_{1}([1,1] ;[2] ; t)=-\ln (1-t) / t$.

$$
\begin{aligned}
{ }_{2} F_{1}\left(\left[\frac{1}{3},-\frac{1}{6}\right] ;\left[\frac{3}{2}\right], t\right) & =1+\frac{(1 / 3) \cdot(-1 / 6)}{(3 / 2) \cdot 1} t+\frac{(1 / 3)(4 / 3) \cdot(-1 / 6)(5 / 6)}{(3 / 2)(5 / 2) \cdot 1 \cdot 2} t^{2}+\cdots \\
& =\frac{(1+\sqrt{t})^{1 / 3}+(1-\sqrt{t})^{1 / 3}}{2}
\end{aligned}
$$

- ${ }_{3} F_{2}([1,1,1] ;[2,2] ; t)=\mathrm{Li}_{2}(t) / t=\sum_{n \geq 1} \frac{t^{n-1}}{n^{2}}$.

Properties of hypergeometric functions

- ${ }_{p+1} F_{q+1}\left(\left[a_{1}, \ldots, a_{p}, c\right],\left[b_{1}, \ldots, b_{q}, c\right] ; t\right)={ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right)$.

Properties of hypergeometric functions

■ ${ }_{p+1} F_{q+1}\left(\left[a_{1}, \ldots, a_{p}, c\right],\left[b_{1}, \ldots, b_{q}, c\right] ; t\right)={ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right)$.

- It holds that

$$
\begin{aligned}
&{ }_{1} F_{q_{1}}\left(\left[a_{1}, \ldots, a_{p_{1}}\right],\left[b_{1}, \ldots, b_{q_{1}}\right] ; t\right) \star{ }_{p_{2}} F_{q_{2}}\left(\left[c_{1}, \ldots, c_{p_{2}}\right],\left[d_{1}, \ldots, d_{q_{2}}\right] ; t\right) \\
&= p_{1}+p_{2} \\
& F_{q_{1}+q_{2}+1}\left(\left[a_{1}, \ldots, a_{p_{1}}, c_{1}, \ldots, c_{p_{2}}\right],\left[b_{1}, \ldots, b_{q_{1}}, d_{1}, \ldots, d_{q_{2}}, 1\right] ; t\right) .
\end{aligned}
$$

Properties of hypergeometric functions

$\square{ }_{p+1} F_{q+1}\left(\left[a_{1}, \ldots, a_{p}, c\right],\left[b_{1}, \ldots, b_{q}, c\right] ; t\right)={ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right)$.

- It holds that

$$
\begin{aligned}
&{ }_{1} F_{q_{1}}\left(\left[a_{1}, \ldots, a_{p_{1}}\right],\left[b_{1}, \ldots, b_{q_{1}}\right] ; t\right) \star{ }_{p_{2}} F_{q_{2}}\left(\left[c_{1}, \ldots, c_{p_{2}}\right],\left[d_{1}, \ldots, d_{q_{2}}\right] ; t\right) \\
&= p_{1}+p_{2} \\
& F_{q_{1}+q_{2}+1}\left(\left[a_{1}, \ldots, a_{p_{1}}, c_{1}, \ldots, c_{p_{2}}\right],\left[b_{1}, \ldots, b_{q_{1}}, d_{1}, \ldots, d_{q_{2}}, 1\right] ; t\right) .
\end{aligned}
$$

- All hypergeometric functions are D-finite.

Properties of hypergeometric functions

■ ${ }_{p+1} F_{q+1}\left(\left[a_{1}, \ldots, a_{p}, c\right],\left[b_{1}, \ldots, b_{q}, c\right] ; t\right)={ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right)$.

- It holds that

$$
\begin{aligned}
&{ }_{1} F_{q_{1}}\left(\left[a_{1}, \ldots, a_{p_{1}}\right],\left[b_{1}, \ldots, b_{q_{1}}\right] ; t\right) \star{ }_{p_{2}} F_{q_{2}}\left(\left[c_{1}, \ldots, c_{p_{2}}\right],\left[d_{1}, \ldots, d_{q_{2}}\right] ; t\right) \\
&= p_{1}+p_{2} \\
& F_{q_{1}+q_{2}+1}\left(\left[a_{1}, \ldots, a_{p_{1}}, c_{1}, \ldots, c_{p_{2}}\right],\left[b_{1}, \ldots, b_{q_{1}}, d_{1}, \ldots, d_{q_{2}}, 1\right] ; t\right) .
\end{aligned}
$$

- All hypergeometric functions are D-finite.
- ${ }_{p} F_{q}$ is not a polynomial and globally bounded $\Rightarrow q=p-1$.

Properties of hypergeometric functions

■ ${ }_{p+1} F_{q+1}\left(\left[a_{1}, \ldots, a_{p}, c\right],\left[b_{1}, \ldots, b_{q}, c\right] ; t\right)={ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right)$.
■ It holds that

$$
\begin{aligned}
&{ }_{1} F_{q_{1}}\left(\left[a_{1}, \ldots, a_{p_{1}}\right],\left[b_{1}, \ldots, b_{q_{1}}\right] ; t\right) \star{ }_{p_{2}} F_{q_{2}}\left(\left[c_{1}, \ldots, c_{p_{2}}\right],\left[d_{1}, \ldots, d_{q_{2}}\right] ; t\right) \\
&= p_{1}+p_{2} \\
& F_{q_{1}+q_{2}+1}\left(\left[a_{1}, \ldots, a_{p_{1}}, c_{1}, \ldots, c_{p_{2}}\right],\left[b_{1}, \ldots, b_{q_{1}}, d_{1}, \ldots, d_{q_{2}}, 1\right] ; t\right) .
\end{aligned}
$$

- All hypergeometric functions are D-finite.

■ ${ }_{p} F_{q}$ is not a polynomial and globally bounded $\Rightarrow q=p-1$.

- The case when ${ }_{p} F_{q}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{q}\right] ; t\right)$ is algebraic is completely classified [Schwarz, 1873; Beukers and Heckman, 1989]

Algebraicity of the hypergeometric function

Theorem (Interlacing criterion: Beukers and Heckman, 1989)

Assume that the rational parameters $\left\{a_{1}, \ldots, a_{p}\right\}$ and $\left\{b_{1}, \ldots, b_{p-1}, b_{p}=1\right\}$ are disjoint modulo \mathbb{Z}. Let N be their common denominator. Then

$$
{ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right)
$$

is algebraic if and only if for all $1 \leq r<N$ with $\operatorname{gcd}(r, N)=1$ the numbers $\left\{\exp \left(2 \pi i r a_{j}\right), 1 \leq j \leq p\right\}$ and $\left\{\exp \left(2 \pi i r b_{j}\right), 1 \leq j \leq p\right\}$ interlace on the unit circle

Interlacing criterion in practice I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,2 / 3] ; t)$. Is $f(t)$ algebraic?

Interlacing criterion in practice I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,2 / 3] ; t)$. Is $f(t)$ algebraic?
- Common denominator of the parameters: $N=24$.

Interlacing criterion in practice I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,2 / 3] ; t)$. Is $f(t)$ algebraic?
- Common denominator of the parameters: $N=24$.

■ We have $\varphi(24)=8$, and each $r \in\{1,5,7,11,13,17,19,23\}=: S$ is coprime to 24 .

Interlacing criterion in practice I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,2 / 3] ; t)$. Is $f(t)$ algebraic?
- Common denominator of the parameters: $N=24$.

■ We have $\varphi(24)=8$, and each $r \in\{1,5,7,11,13,17,19,23\}=: S$ is coprime to 24 .
■ For each $r \in S$ we look at $\{\exp (2 \pi i r \cdot 1 / 4), \exp (2 \pi i r \cdot 3 / 8), \exp (2 \pi i r \cdot 7 / 8)\}$ and $\{\exp (2 \pi i r \cdot 1 / 3), \exp (2 \pi i r \cdot 2 / 3), \exp (2 \pi i r \cdot 1)\}$.

Interlacing criterion in practice I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,2 / 3] ; t)$. Is $f(t)$ algebraic?
- Common denominator of the parameters: $N=24$.

■ We have $\varphi(24)=8$, and each $r \in\{1,5,7,11,13,17,19,23\}=: S$ is coprime to 24 .
■ For each $r \in S$ we look at $\{\exp (2 \pi i r \cdot 1 / 4), \exp (2 \pi i r \cdot 3 / 8), \exp (2 \pi i r \cdot 7 / 8)\}$ and $\{\exp (2 \pi i r \cdot 1 / 3), \exp (2 \pi i r \cdot 2 / 3), \exp (2 \pi i r \cdot 1)\}$.

Interlacing criterion in practice I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,2 / 3] ; t)$. Is $f(t)$ algebraic?
- Common denominator of the parameters: $N=24$.

■ We have $\varphi(24)=8$, and each $r \in\{1,5,7,11,13,17,19,23\}=: S$ is coprime to 24 .
■ For each $r \in S$ we look at $\{\exp (2 \pi i r \cdot 1 / 4), \exp (2 \pi i r \cdot 3 / 8), \exp (2 \pi i r \cdot 7 / 8)\}$ and $\{\exp (2 \pi i r \cdot 1 / 3), \exp (2 \pi i r \cdot 2 / 3), \exp (2 \pi i r \cdot 1)\}$.

$\Rightarrow f(t)$ is algebraic.

Global boundedness of the hypergeometric function

Theorem (Christol, 1986)

Assume that the rational parameters $\left\{a_{1}, \ldots, a_{p}\right\}$ and $\left\{b_{1}, \ldots, b_{p-1}, b_{p}=1\right\}$ are disjoint modulo \mathbb{Z}. Let N be their common denominator. Then

$$
{ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right)
$$

is globally bounded if and only if for all $1 \leq r<N$ with $\operatorname{gcd}(r, N)=1$, one encounters more numbers in $\left\{\exp \left(2 \pi i r a_{j}\right), 1 \leq j \leq p\right\}$ than in $\left\{\exp \left(2 \pi i r b_{j}\right), 1 \leq j \leq p\right\}$ when running through the unit circle from 1 to $\exp (2 \pi i)$.

Interlacing criterion in practice II

■ Is $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1 / 2] ; t)$ algebraic or at least globally bounded?

Interlacing criterion in practice II

- Is $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1 / 2] ; t)$ algebraic or at least globally bounded?
- Common denominator of the parameters: $N=18$.

Interlacing criterion in practice II

- Is $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1 / 2] ; t)$ algebraic or at least globally bounded?
- Common denominator of the parameters: $N=18$.

■ We have $\varphi(18)=6$, and each $r \in\{1,5,7,11,13,17\}=: S$ is coprime to 18 .

Interlacing criterion in practice II

■ Is $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1 / 2] ; t)$ algebraic or at least globally bounded?

- Common denominator of the parameters: $N=18$.

■ We have $\varphi(18)=6$, and each $r \in\{1,5,7,11,13,17\}=: S$ is coprime to 18 .
■ For each $r \in S$ we look at $\{\exp (2 \pi i r \cdot 1 / 9), \exp (2 \pi i r \cdot 4 / 9), \exp (2 \pi i r \cdot 5 / 9)\}$ and $\{\exp (2 \pi i r \cdot 1 / 3), \exp (2 \pi i r \cdot 1 / 2), \exp (2 \pi i r \cdot 1)\}$.

Interlacing criterion in practice II

■ Is $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1 / 2] ; t)$ algebraic or at least globally bounded?

- Common denominator of the parameters: $N=18$.

■ We have $\varphi(18)=6$, and each $r \in\{1,5,7,11,13,17\}=: S$ is coprime to 18 .
■ For each $r \in S$ we look at $\{\exp (2 \pi i r \cdot 1 / 9), \exp (2 \pi i r \cdot 4 / 9), \exp (2 \pi i r \cdot 5 / 9)\}$ and $\{\exp (2 \pi i r \cdot 1 / 3), \exp (2 \pi i r \cdot 1 / 2), \exp (2 \pi i r \cdot 1)\}$.

Interlacing criterion in practice II

■ Is $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1 / 2] ; t)$ algebraic or at least globally bounded?

- Common denominator of the parameters: $N=18$.

■ We have $\varphi(18)=6$, and each $r \in\{1,5,7,11,13,17\}=: S$ is coprime to 18 .
■ For each $r \in S$ we look at $\{\exp (2 \pi i r \cdot 1 / 9), \exp (2 \pi i r \cdot 4 / 9), \exp (2 \pi i r \cdot 5 / 9)\}$ and $\{\exp (2 \pi i r \cdot 1 / 3), \exp (2 \pi i r \cdot 1 / 2), \exp (2 \pi i r \cdot 1)\}$.

$\Rightarrow f(t)$ is transcendental and not even globally bounded.

Commercial break

Commercial break

TikZ: \backslash BeHe $\{30\}\{1 / 5\}\{8 / 15\}\{13 / 15\}\{1 / 2\}\{3 / 5\}$

Commercial break

TikZ: $\backslash \operatorname{BeHe}\{30\}\{1 / 5\}\{8 / 15\}\{13 / 15\}\{1 / 2\}\{3 / 5\}$

Maple: ishyperdiagalgebraic ([[1/5, 8/15, 13/15], [1/2, 3/5]]) >true

Christol's conjecture and hypergeometric functions

(C) If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

Christol's conjecture and hypergeometric functions

(C) If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
$\left(C^{\prime}\right)$ If a hypergeometric function ${ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

Christol's conjecture and hypergeometric functions

(C) If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
$\left(C^{\prime}\right)$ If a hypergeometric function ${ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
$\left(C^{\prime \prime}\right)$ If ${ }_{3} F_{2}\left(\left[a_{1}, a_{2}, a_{3}\right],\left[b_{1}, b_{2}\right] ; t\right) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

Christol's conjecture and hypergeometric functions

(C) If a power series $f \in \mathbb{Q} \llbracket t \rrbracket$ is D-finite and globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
$\left(C^{\prime}\right)$ If a hypergeometric function ${ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
$\left(C^{\prime \prime}\right)$ If ${ }_{3} F_{2}\left(\left[a_{1}, a_{2}, a_{3}\right],\left[b_{1}, b_{2}\right] ; t\right) \in \mathbb{Q} \llbracket t \rrbracket$ is globally bounded then $f=\operatorname{Diag}(g)$ for some algebraic power series $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.
($C^{\prime \prime \prime}$) Show that

$$
{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{5}{9}\right],\left[\frac{1}{3}, 1\right] ; 729 t\right)=1+60 t+20475 t^{2}+9373650 t^{3}+\cdots
$$

is the diagonal of some algebraic $g \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$.

Hypergeometric function and Christol's conjecture: resolved cases

Recall that the height of $f(t)={ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right)$ is given by

$$
h=\left|\left\{1 \leqslant j \leqslant p \mid b_{j} \in \mathbb{Z}\right\}\right|-\left|\left\{1 \leqslant j \leqslant p \mid a_{j} \in \mathbb{Z}\right\}\right|,
$$

where $b_{p}=1$.

Hypergeometric function and Christol's conjecture: resolved cases

Recall that the height of $f(t)={ }_{p} F_{p-1}\left(\left[a_{1}, \ldots, a_{p}\right],\left[b_{1}, \ldots, b_{p-1}\right] ; t\right)$ is given by

$$
h=\left|\left\{1 \leqslant j \leqslant p \mid b_{j} \in \mathbb{Z}\right\}\right|-\left|\left\{1 \leqslant j \leqslant p \mid a_{j} \in \mathbb{Z}\right\}\right|
$$

where $b_{p}=1$.

- Assume that $h=1$ (all b_{i} 's are non-integer). Then [Beukers and Heckman, 1989; Christol, 1990]

$$
f \text { algebraic } \Longleftrightarrow f \text { globally bounded. }
$$

- Assume that $h=p$ (all b_{i} 's are integer). Then

$$
f(t)={ }_{1} F_{0}\left(\left[a_{1}\right],[], t\right) \star{ }_{1} F_{0}\left(\left[a_{2}\right],[], t\right) \star \cdots \star{ }_{1} F_{0}\left(\left[a_{p}\right],[], t\right) .
$$

Each ${ }_{1} F_{0}\left(\left[a_{j}\right],[], t\right)=(1-t)^{-a_{j}}$ is algebraic.

First non-trivial example: ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$

- Assume $f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded. Is $f(t)$ a diagonal?

First non-trivial example: ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$

- Assume $f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded. Is $f(t)$ a diagonal?
- We can assume that $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$ and distinct $\bmod \mathbb{Z}$. Moreover, assume $0<a, b, c, d<1$.

First non-trivial example: ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$

- Assume $f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded. Is $f(t)$ a diagonal?

■ We can assume that $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$ and distinct $\bmod \mathbb{Z}$. Moreover, assume $0<a, b, c, d<1$.

- It always holds that

$$
\begin{aligned}
f(t) & ={ }_{2} F_{1}([a, b],[d] ; t) \star{ }_{1} F_{0}([c],[] ; t)={ }_{2} F_{1}([a, c],[d] ; t) \star{ }_{1} F_{0}([b],[] ; t) \\
& ={ }_{2} F_{1}([b, c],[d] ; t) \star{ }_{1} F_{0}([a],[] ; t),
\end{aligned}
$$

therefore we can assume that each such ${ }_{2} F_{1}$ is transcendental.

First non-trivial example: ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$

- Assume $f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded. Is $f(t)$ a diagonal?

■ We can assume that $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$ and distinct $\bmod \mathbb{Z}$. Moreover, assume $0<a, b, c, d<1$.

- It always holds that

$$
\begin{aligned}
f(t) & ={ }_{2} F_{1}([a, b],[d] ; t) \star{ }_{1} F_{0}([c],[] ; t)={ }_{2} F_{1}([a, c],[d] ; t) \star{ }_{1} F_{0}([b],[] ; t) \\
& ={ }_{2} F_{1}([b, c],[d] ; t) \star{ }_{1} F_{0}([a],[] ; t),
\end{aligned}
$$

therefore we can assume that each such ${ }_{2} F_{1}$ is transcendental.
($C^{i v}$) List with 116 such ${ }_{3} F_{2}$'s by [Bostan, Boukraa, Christol, Hassani, Maillard, 2011]:

$$
\begin{array}{r}
\mathrm{BBCHM}=\left\{{ }_{3} F_{2}([1 / 3,5 / 9,8 / 9],[1 / 2,1] ; t),{ }_{3} F_{2}([1 / 4,3 / 8,5 / 6],[2 / 3,1] ; t), \ldots,\right. \\
\left.\ldots,{ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1] ; t), \ldots\right\}
\end{array}
$$

A class of hypergeometric diagonals

- Main question: when can we write $f(t) \in \mathbb{Q} \llbracket t \rrbracket$ as the diagonal of some rational/algebraic $g\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$?
- First non-trivial/unsolved class:

$$
f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t)
$$

such that $f(t)$ is globally bounded.
■ Explicit example [Christol, 1986]:

$$
f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1] ; t) .
$$

■ List of 116 similar "difficult" examples [BBCHM, 2011].

A class of hypergeometric diagonals

- Main question: when can we write $f(t) \in \mathbb{Q} \llbracket t \rrbracket$ as the diagonal of some rational/algebraic $g\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Q} \llbracket x_{1}, \ldots, x_{n} \rrbracket$?
- First non-trivial/unsolved class:

$$
f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t),
$$

such that $f(t)$ is globally bounded.
■ Explicit example [Christol, 1986]:

$$
f(t)={ }_{3} F_{2}([1 / 9,4 / 9,5 / 9],[1 / 3,1] ; t) .
$$

■ List of 116 similar "difficult" examples [BBCHM, 2011].

- Recent progress by [Abdelaziz, Koutschan, Maillard, 2020]:

$$
{ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t) \quad \text { and } \quad{ }_{3} F_{2}([2 / 9,5 / 9,8 / 9],[2 / 3,1] ; t)
$$

are diagonals.

Result of Abdelaziz, Koutschan and Maillard, 2020

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{2 / 3}}{1-x-y-z}\right), \quad \text { and } \\
& { }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right) .
\end{aligned}
$$

Result of Abdelaziz, Koutschan and Maillard, 2020

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{2 / 3}}{1-x-y-z}\right), \quad \text { and } \\
& { }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right)
\end{aligned}
$$

More generally,

$$
{ }_{3} F_{2}\left(\left[\frac{1-R}{3}, \frac{2-R}{3}, \frac{3-R}{3}\right],[1,1-R] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{R}}{1-x-y-z}\right),
$$

for all $R \in \mathbb{Q}$.

Result of Abdelaziz, Koutschan and Maillard, 2020

$$
\begin{aligned}
& { }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[\frac{1}{3}, 1\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{2 / 3}}{1-x-y-z}\right), \quad \text { and } \\
& { }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[\frac{2}{3}, 1\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-y)^{1 / 3}}{1-x-y-z}\right) .
\end{aligned}
$$

More generally,
${ }_{3} F_{2}\left(\left[\frac{1-R}{3}, \frac{2-R}{3}, \frac{3-R}{3}\right],[1,1-R] ;-27 t\right)=\operatorname{Diag}\left((1+x+y)^{R}(1+x+y+z)^{-1}\right)$,
for all $R \in \mathbb{Q}$.

Main result I

Theorem (Bostan and $Y .$, 2020)
Let $N \in \mathbb{N} \backslash\{0\}$ and $b_{1}, \ldots, b_{N} \in \mathbb{Q}$ with $b_{N} \neq 0$. Then

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)
$$

is a hypergeometric function.

Complete identity

Let $B(k):=-\left(b_{k}+\cdots+b_{N}\right)$.

$$
\begin{aligned}
u^{k} & :=\left(\frac{B(k)}{N-k+1}, \frac{B(k)+1}{N-k+1}, \ldots, \frac{B(k)+N-k}{N-k+1}\right), \quad k=1, \ldots, N, \\
v^{k} & :=\left(\frac{B(k)}{N-k}, \frac{B(k)+1}{N-k}, \ldots, \frac{B(k)+N-k-1}{N-k}\right), \quad k=1, \ldots, N-1 .
\end{aligned}
$$

Set $v^{N}:=(1,1, \ldots, 1)$ with $N-1$ ones and $M:=N(N+1) / 2$. Define $u:=\left[u^{1}, \ldots, u^{N}\right]$ and $v:=\left[v^{1}, \ldots, v^{N}\right]$.

Theorem (Bostan and Y., 2020)

It holds that

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)={ }_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right) .
$$

Examples

- If $N=2$ we have
$\operatorname{Diag}\left((1+x)^{R}(1+x+y)^{S}\right)={ }_{3} F_{2}\left(\left[\frac{-(R+S)}{2}, \frac{-(R+S)+1}{2},-S\right] ;[-(R+S), 1] ; 4 t\right)$.

Examples

- If $N=2$ we have
$\operatorname{Diag}\left((1+x)^{R}(1+x+y)^{S}\right)={ }_{3} F_{2}\left(\left[\frac{-(R+S)}{2}, \frac{-(R+S)+1}{2},-S\right] ;[-(R+S), 1] ; 4 t\right)$.
- Hence

$$
\operatorname{Diag}\left((1+x)^{-1 / 3}(1+x+y)^{-1 / 3}\right)={ }_{3} F_{2}\left(\left[\frac{1}{3}, \frac{1}{3}, \frac{5}{6}\right] ;\left[\frac{2}{3}, 1\right] ; 4 t\right)
$$

Examples

- If $N=2$ we have
$\operatorname{Diag}\left((1+x)^{R}(1+x+y)^{S}\right)={ }_{3} F_{2}\left(\left[\frac{-(R+S)}{2}, \frac{-(R+S)+1}{2},-S\right] ;[-(R+S), 1] ; 4 t\right)$.
- Hence

$$
\operatorname{Diag}\left((1+x)^{-1 / 3}(1+x+y)^{-1 / 3}\right)={ }_{3} F_{2}\left(\left[\frac{1}{3}, \frac{1}{3}, \frac{5}{6}\right] ;\left[\frac{2}{3}, 1\right] ; 4 t\right)
$$

- And

$$
\operatorname{Diag}\left((1+x)^{1 / 4}(1+x+y)^{-3 / 4}\right)={ }_{3} F_{2}\left(\left[\frac{1}{4}, \frac{3}{4}, \frac{3}{4}\right] ;\left[\frac{1}{2}, 1\right] ; 4 t\right)
$$

Examples

- Letting $N=3$ we obtain

$$
\begin{gathered}
\operatorname{Diag}\left((1+x)^{R}(1+x+y)^{S}(1+x+y+z)^{T}\right)= \\
{ }_{6} F_{5}\left(\left[\frac{-(R+S+T)}{3}, \frac{-(R+S+T)+1}{3}, \frac{-(R+S+T)+2}{3}, \frac{-(S+T)}{2}, \frac{-(S+T)+1}{2},-T\right]\right. \\
\left.\left[\frac{-(R+S+T)}{2}, \frac{-(R+S+T)+1}{2},-(S+T), 1,1\right] ;-27 t\right)
\end{gathered}
$$

Examples

- Letting $N=3$ we obtain

$$
\begin{gathered}
\operatorname{Diag}\left((1+x)^{R}(1+x+y)^{S}(1+x+y+z)^{T}\right)= \\
{ }_{6} F_{5}\left(\left[\frac{-(R+S+T)}{3}, \frac{-(R+S+T)+1}{3}, \frac{-(R+S+T)+2}{3}, \frac{-(S+T)}{2}, \frac{-(S+T)+1}{2},-T\right]\right. \\
\left.\left[\frac{-(R+S+T)}{2}, \frac{-(R+S+T)+1}{2},-(S+T), 1,1\right] ;-27 t\right)
\end{gathered}
$$

- Hence

$$
\operatorname{Diag}\left(\frac{(1+x+y)^{S}}{1+x+y+z}\right)={ }_{3} F_{2}\left(\left[\frac{1-S}{3}, \frac{2-S}{3}, \frac{3-S}{3}\right],[1,1-S] ;-27 t\right)
$$

Main lemma

Lemma

Let N be a positive integer and $b_{1}, \ldots, b_{N} \in \mathbb{Q}$ such that $b_{N} \neq 0$. It holds that

$$
\begin{aligned}
& {\left[x_{1}^{k_{1}} \cdots x_{N}^{k_{N}}\right]\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}} \\
& \quad=\binom{b_{N}}{k_{N}}\binom{b_{N-1}+b_{N}-k_{N}}{k_{N-1}} \cdots\binom{b_{1}+\cdots+b_{N}-k_{N}-\cdots-k_{2}}{k_{1}} .
\end{aligned}
$$

Proof of main lemma

Proof.

$$
\left[x_{1}^{k_{1}} \cdots x_{N-1}^{k_{N-1}} \cdot x_{N}^{k_{N}}\right]\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N-1}\right)^{b_{N-1}}\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}
$$

$$
=
$$

Proof of main lemma

Proof.

$$
\begin{aligned}
& {\left[x_{1}^{k_{1}} \cdots x_{N-1}^{k_{N-1}} \cdot x_{N}^{k_{N}}\right]\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N-1}\right)^{b_{N-1}}\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}} \\
& \quad=\binom{b_{N}}{k_{N}}
\end{aligned}
$$

Proof of main lemma

Proof.

$$
\begin{aligned}
& {\left[x_{1}^{k_{1}} \cdots x_{N-1}^{k_{N-1}} \cdot x_{N}^{k_{N}}\right]\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N-1}\right)^{b_{N-1}}\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}} \\
& \quad=\binom{b_{N}}{k_{N}}\binom{b_{N-1}+b_{N}-k_{N}}{k_{N-1}}
\end{aligned}
$$

Proof of main lemma

Proof.

$$
\begin{aligned}
& {\left[x_{1}^{k_{1}} \cdots x_{N-1}^{k_{N-1}} \cdot x_{N}^{k_{N}}\right]\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N-1}\right)^{b_{N-1}}\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}} \\
& \quad=\binom{b_{N}}{k_{N}}\binom{b_{N-1}+b_{N}-k_{N}}{k_{N-1}} \cdots\binom{b_{1}+\cdots+b_{N-1}+b_{N}-k_{N}-k_{N-1}-\cdots-k_{2}}{k_{1}} .
\end{aligned}
$$

Sketch of proof of Main Theorem

- To show:

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)={ }_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right) .
$$

Sketch of proof of Main Theorem

- To show:
$\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)={ }_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right)$.
- By Lemma:

$$
\left[t^{n}\right] \operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)=\binom{b_{N}}{n} \cdots\binom{b_{1}+\cdots+b_{N}-(N-1) n}{n}
$$

Sketch of proof of Main Theorem

- To show:

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)={ }_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right)
$$

- By Lemma:

$$
\left[t^{n}\right] \operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)=\binom{b_{N}}{n} \cdots\binom{b_{1}+\cdots+b_{N}-(N-1) n}{n}
$$

- By definition:

$$
\left[t^{n}\right]_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right)=(-1)^{N n} N^{N n} \frac{\prod_{i, j}\left(u_{j}^{(i)}\right)_{n}}{\prod_{i, j}\left(v_{j}^{(i)}\right)_{n} \cdot n!}
$$

Sketch of proof of Main Theorem

- To show:

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)={ }_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right)
$$

- By Lemma:

$$
\left[t^{n}\right] \operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)=\binom{b_{N}}{n} \cdots\binom{b_{1}+\cdots+b_{N}-(N-1) n}{n}
$$

- By definition:

$$
\left[t^{n}\right]_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right)=(-1)^{N n} N^{N n} \frac{\prod_{i, j}\left(u_{j}^{(i)}\right)_{n}}{\prod_{i, j}\left(v_{j}^{(i)}\right)_{n} \cdot n!}
$$

Algebraicity of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$

$$
\begin{aligned}
& \text { Corollary } \\
& \text { Let } f(t)=\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right) \text {, then } f \text { is algebraic if and only if } \\
& N=2 \text { and } b_{2} \in \mathbb{Z} \text {, or } N=1 \text {. }
\end{aligned}
$$

Algebraicity of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$

Corollary

Let $f(t)=\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$, then f is algebraic if and only if $N=2$ and $b_{2} \in \mathbb{Z}$, or $N=1$.

Sketch of proof.

$$
{ }_{M} F_{M-1}(u ; v ; t)={ }_{M} F_{M-1}(\left[u^{(1)}, \ldots, u^{(N)}\right] ;[v^{(1)}, \ldots, v^{(N-1)}, \underbrace{1,1, \ldots, 1]}_{N-1 \text { times }} ; t)
$$

We can have at most one cancellation between $u^{(k)}$ and a 1. By Christol's theorem, $N \leq 2$.

Hadamard grade of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$

Recall that the Hadamard grade of $f(t)$ is the least positive integer $h=h(f)$ such that $f(t)$ can be written as the Hadamard product of h algebraic power series.

Corollary
The Hadamard grade of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$ is finite and $\leq N$.

Hadamard grade of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$

Recall that the Hadamard grade of $f(t)$ is the least positive integer $h=h(f)$ such that $f(t)$ can be written as the Hadamard product of h algebraic power series.

Corollary

The Hadamard grade of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$ is finite and $\leq N$.

Proof.

$$
M_{M-1}(u ; v ; t)={ }_{N} F_{N-1}\left(u^{(1)} ; v^{(1)} ; t\right) \star{ }_{N-1} F_{N-2}\left(u^{(2)} ; v^{(2)} ; t\right) \star \cdots \star_{1} F_{0}\left(u^{(N)} ; ; t\right), \quad \text { and }
$$

Hadamard grade of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$

Corollary

The Hadamard grade of $\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$ is finite and $\leq N$.

Proof.

$$
\begin{aligned}
& { }_{M} F_{M-1}(u ; v ; t)={ }_{N} F_{N-1}\left(u^{(1)} ; v^{(1)} ; t\right) \star{ }_{N-1} F_{N-2}\left(u^{(2)} ; v^{(2)} ; t\right) \star \cdots \star_{1} F_{0}\left(u^{(N)} ; ; t\right), \quad \text { and } \\
& { }_{N-k+1} F_{N-k}\left(u^{(k)} ; v^{(k)} ; t\right)={ }_{N} F_{N-1}\left(\left[\frac{B(k)}{N-k+1}, \frac{B(k)+1}{N-k+1}, \ldots, \frac{B(k)+N-k}{N-k+1}\right] ;\right. \\
& \left.\quad\left[\frac{B(k)}{N-k}, \frac{B(k)+1}{N-k}, \ldots, \frac{B(k)+N-k-1}{N-k}\right] ; t\right)
\end{aligned}
$$

is algebraic.

The list BBCHM

($C^{i v}$) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116 ${ }_{3} F_{2}$'s such that:

- ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded.
- $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$, distinct $\bmod \mathbb{Z}$, and $0<a, b, c, d<1$.

■ Each ${ }_{2} F_{1}([a, b],[d] ; t),{ }_{2} F_{1}([a, c],[d] ; t),{ }_{2} F_{1}([b, c],[d] ; t)$ is transcendental.

- In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list are diagonals by constructing an explicit representation.

The list BBCHM

($C^{i v}$) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116 ${ }_{3} F_{2}$'s such that:

- ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded.
- $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$, distinct $\bmod \mathbb{Z}$, and $0<a, b, c, d<1$.
- Each ${ }_{2} F_{1}([a, b],[d] ; t),{ }_{2} F_{1}([a, c],[d] ; t),{ }_{2} F_{1}([b, c],[d] ; t)$ is transcendental.
- In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list are diagonals by constructing an explicit representation.
- New idea: write

$$
\begin{aligned}
f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t) & ={ }_{2} F_{1}([a, b],[r] ; t) \star{ }_{2} F_{1}([c, r],[d] ; t)=\cdots= \\
& ={ }_{3} F_{2}([a, b, c],[d, r] ; t) \star{ }_{1} F_{0}([r],[] ; t)
\end{aligned}
$$

for any $r \in \mathbb{Q}$.

The list BBCHM

($C^{i v}$) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116 ${ }_{3} F_{2}$'s such that:

- ${ }_{3} F_{2}([a, b, c],[d, 1] ; t)$ is globally bounded.
- $a, b, c, d \in \mathbb{Q} \backslash \mathbb{Z}$, distinct $\bmod \mathbb{Z}$, and $0<a, b, c, d<1$.
- Each ${ }_{2} F_{1}([a, b],[d] ; t),{ }_{2} F_{1}([a, c],[d] ; t),{ }_{2} F_{1}([b, c],[d] ; t)$ is transcendental.
- In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list are diagonals by constructing an explicit representation.
- New idea: write

$$
\begin{aligned}
f(t)={ }_{3} F_{2}([a, b, c],[d, 1] ; t) & ={ }_{2} F_{1}([a, b],[r] ; t) \star{ }_{2} F_{1}([c, r],[d] ; t)=\cdots= \\
& ={ }_{3} F_{2}([a, b, c],[d, r] ; t) \star{ }_{1} F_{0}([r],[] ; t)
\end{aligned}
$$

for any $r \in \mathbb{Q}$.

- If for some r, both ${ }_{2} F_{1}([a, b],[r] ; t)$ and ${ }_{2} F_{1}([c, r],[d] ; t)$ are algebraic, or ${ }_{3} F_{2}([a, b, c],[d, r] ; t)$ is algebraic, then f is a diagonal.

Example I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,1] ; t)$.

Example I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,1] ; t)$.
- We find that

$$
f_{1}={ }_{2} F_{1}([3 / 8,7 / 8],[3 / 4] ; t) \quad \text { and } \quad f_{2}={ }_{2} F_{1}([1 / 4,3 / 4],[1 / 3] ; t)
$$

are algebraic.

Example I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,1] ; t)$.
- We find that

$$
f_{1}={ }_{2} F_{1}([3 / 8,7 / 8],[3 / 4] ; t) \quad \text { and } \quad f_{2}={ }_{2} F_{1}([1 / 4,3 / 4],[1 / 3] ; t)
$$

are algebraic.

- Hence $f_{1}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right)$ and $f_{2}=\operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)$ for rational functions g_{1}, g_{2}.

Example I

- Take $f(t)={ }_{3} F_{2}([1 / 4,3 / 8,7 / 8],[1 / 3,1] ; t)$.
- We find that

$$
f_{1}={ }_{2} F_{1}([3 / 8,7 / 8],[3 / 4] ; t) \quad \text { and } \quad f_{2}={ }_{2} F_{1}([1 / 4,3 / 4],[1 / 3] ; t)
$$

are algebraic.

- Hence $f_{1}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right)$ and $f_{2}=\operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)$ for rational functions g_{1}, g_{2}.
- We have

$$
f(t)=f_{1} \star f_{2}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right) \star \operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right) \cdot g_{2}\left(y_{1}, y_{2}\right)\right)
$$

therefore f is a diagonal.

Example II: alternative proof that ${ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t) \in$ DIAG

- Take $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t)$.

Example II: alternative proof that ${ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t) \in \mathrm{DIAG}$

- Take $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t)$.
- We find that

$$
f_{1}={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,2 / 3] ; t)
$$

is algebraic.

Example II: alternative proof that ${ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t) \in$ DIAG

- Take $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t)$.
- We find that

$$
f_{1}={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,2 / 3] ; t)
$$

is algebraic.

Example II: alternative proof that ${ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t) \in$ DIAG

- Take $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t)$.

■ We find that

$$
f_{1}={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,2 / 3] ; t)
$$

is algebraic.

- Hence $f_{1}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right)$ and $f_{2}={ }_{1} F_{0}([2 / 3],[] ; t)=\operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)$ for rational functions g_{1}, g_{2}.

Example II: alternative proof that ${ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t) \in \mathrm{DIAG}$

- Take $f(t)={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,1] ; t)$.
- We find that

$$
f_{1}={ }_{3} F_{2}([1 / 9,4 / 9,7 / 9],[1 / 3,2 / 3] ; t)
$$

is algebraic.

- Hence $f_{1}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right)$ and $f_{2}={ }_{1} F_{0}([2 / 3],[] ; t)=\operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)$ for rational functions g_{1}, g_{2}.
- We have

$$
f(t)=f_{1} \star f_{2}=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right)\right) \star \operatorname{Diag}\left(g_{2}\left(y_{1}, y_{2}\right)\right)=\operatorname{Diag}\left(g_{1}\left(x_{1}, x_{2}\right) \cdot g_{2}\left(y_{1}, y_{2}\right)\right),
$$

therefore f is a diagonal.

New Results on the BBCHM list

- By writing

$$
{ }_{3} F_{2}([a, b, c],[d, 1] ; t)={ }_{2} F_{1}([a, b],[r] ; t) \star{ }_{2} F_{1}([c, r],[d] ; t)=\ldots,
$$

and searching for $r \in \mathbb{Q}$ such that ${ }_{2} F_{1}([a, b],[r] ; t)$ and ${ }_{2} F_{1}([c, r],[d] ; t)$ are algebraic, we can resolve 28 cases of the list. Then $116-28=88$ remain.

- By writing

$$
{ }_{3} F_{2}([a, b, c],[d, 1] ; t)={ }_{3} F_{2}([a, b, c],[d, r] ; t) \star{ }_{1} F_{0}([r],[] ; t),
$$

we can resolve 12 more cases. So $88-12=76$ remain.

Limitations

- We can also write

$$
\begin{aligned}
{ }_{3} F_{2}([a, b, c],[d, 1] ; t) & ={ }_{3} F_{2}([a, b, s],[d, r] ; t) \star{ }_{2} F_{1}([c, r],[s] ; t)=\ldots \\
& ={ }_{3} F_{2}([a, b, c],[r, s] ; t) \star{ }_{2} F_{1}([r, s],[d] ; t)
\end{aligned}
$$

however this does not resolve any new cases.

Limitations

- We can also write

$$
\begin{aligned}
{ }_{3} F_{2}([a, b, c],[d, 1] ; t) & ={ }_{3} F_{2}([a, b, s],[d, r] ; t) \star{ }_{2} F_{1}([c, r],[s] ; t)=\ldots \\
& ={ }_{3} F_{2}([a, b, c],[r, s] ; t) \star{ }_{2} F_{1}([r, s],[d] ; t)
\end{aligned}
$$

however this does not resolve any new cases.

- Assuming the Rohrlich-Lang conjecture, [Rivoal and Roques, 2014] could prove that

$$
{ }_{3} F_{2}\left(\left[\frac{1}{7}, \frac{2}{7}, \frac{4}{7}\right],\left[1, \frac{1}{2}\right], 2401 t\right)=1+112 t+103488 t^{2}+139087872 t^{3}+\cdots
$$

has infinite Hadamard grade.

Summary and Conclusion

- Christol's conjecture is still widely open, but we are getting (a bit) closer.

Summary and Conclusion

- Christol's conjecture is still widely open, but we are getting (a bit) closer.
- The functions $N(N+1) / 2 F_{N(N+1) / 2-1}\left(\left[u^{(1)}, \ldots, u^{(N)}\right] ;\left[v^{(1)}, \ldots, v^{(N)}\right] ;(-N)^{N} t\right)$ are globally bounded and diagonals of algebraic/rational functions.

Summary and Conclusion

- Christol's conjecture is still widely open, but we are getting (a bit) closer.
- The functions $N(N+1) / 2 F_{N(N+1) / 2-1}\left(\left[u^{(1)}, \ldots, u^{(N)}\right] ;\left[v^{(1)}, \ldots, v^{(N)}\right] ;(-N)^{N} t\right)$ are globally bounded and diagonals of algebraic/rational functions.
- The main identities of Abdelaziz, Koutschan and Maillard fit in a larger picture.

Summary and Conclusion

■ Christol's conjecture is still widely open, but we are getting (a bit) closer.

- The functions $N(N+1) / 2 F_{N(N+1) / 2-1}\left(\left[u^{(1)}, \ldots, u^{(N)}\right] ;\left[v^{(1)}, \ldots, v^{(N)}\right] ;(-N)^{N} t\right)$ are globally bounded and diagonals of algebraic/rational functions.
- The main identities of Abdelaziz, Koutschan and Maillard fit in a larger picture.
- The function $f(t)=\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$ is hypergeometric.
- $f(t)$ is algebraic if and only if $N=2$ and $b_{2} \in \mathbb{Z}$, or $N=1$.
- $f(t)$ has finite Hadamard grade.

Summary and Conclusion

- Christol's conjecture is still widely open, but we are getting (a bit) closer.
- The functions ${ }_{N(N+1) / 2} F_{N(N+1) / 2-1}\left(\left[u^{(1)}, \ldots, u^{(N)}\right] ;\left[v^{(1)}, \ldots, v^{(N)}\right] ;(-N)^{N} t\right)$ are globally bounded and diagonals of algebraic/rational functions.
- The main identities of Abdelaziz, Koutschan and Maillard fit in a larger picture.
- The function $f(t)=\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$ is hypergeometric.
- $f(t)$ is algebraic if and only if $N=2$ and $b_{2} \in \mathbb{Z}$, or $N=1$.
- $f(t)$ has finite Hadamard grade.

■ 40 cases of the list BBCHM are resolved.

Summary and Conclusion

■ Christol's conjecture is still widely open, but we are getting (a bit) closer.

- The functions ${ }_{N(N+1) / 2} F_{N(N+1) / 2-1}\left(\left[u^{(1)}, \ldots, u^{(N)}\right] ;\left[v^{(1)}, \ldots, v^{(N)}\right] ;(-N)^{N} t\right)$ are globally bounded and diagonals of algebraic/rational functions.
- The main identities of Abdelaziz, Koutschan and Maillard fit in a larger picture.
- The function $f(t)=\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\right)$ is hypergeometric.
- $f(t)$ is algebraic if and only if $N=2$ and $b_{2} \in \mathbb{Z}$, or $N=1$.
- $f(t)$ has finite Hadamard grade.
- 40 cases of the list BBCHM are resolved.
- Considerations with the Hadamard grade show that we need a new viewpoint.

Main result II

Theorem (Bostan and Y., 2020)
Let $N \in \mathbb{N} \backslash\{0\}$ and $b_{1}, \ldots, b_{N} \in \mathbb{Q}$ with $b_{N} \neq 0$ and $b_{N-1}+b_{N}=-1$. Then for any $b \in \mathbb{Q}$,

$$
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}} \cdot\left(1+x_{1}+\cdots+2 x_{N-1}\right)^{b}\right)
$$

is a hypergeometric function.

Complete identity

Let $B(k):=-\left(b_{k}+\cdots+b_{N}+b\right)$.

$$
\begin{aligned}
u^{k} & :=\left(\frac{B(k)}{N-k+1}, \frac{B(k)+1}{N-k+1}, \ldots, \frac{B(k)+N-k}{N-k+1}\right), \quad k=1, \ldots, N-2 \\
v^{k} & :=\left(\frac{B(k)}{N-k}, \frac{B(k)+1}{N-k}, \ldots, \frac{B(k)+N-k-1}{N-k}\right), \quad k=1, \ldots, N-2
\end{aligned}
$$

Set $u^{N-1}:=-\left(b_{N-1}+b_{N}+b\right) / 2=(1-b) / 2, u^{N}=-b_{N}$ and $v^{N-1}:=(1,1, \ldots, 1)$ with $N-1$. $M:=N(N+1) / 2$ and define $u:=\left[u^{1}, \ldots, u^{N}\right]$ and $v:=\left[v^{1}, \ldots, v^{N-1}\right]$.
Theorem (Bostan and Y., 2020)
It holds that

$$
\begin{aligned}
\operatorname{Diag}\left(\left(1+x_{1}\right)^{b_{1}}\left(1+x_{1}+x_{2}\right)^{b_{2}} \cdots\right. & \left.\left(1+x_{1}+\cdots+x_{N}\right)^{b_{N}}\left(1+x_{1}+\cdots+2 x_{N-1}\right)^{b}\right) \\
& ={ }_{M} F_{M-1}\left(u ; v ;(-N)^{N} t\right) .
\end{aligned}
$$

Example

For $N=3$ and $R=b_{1}, b=S, b_{2}=0, b_{3}=-1$:
$\operatorname{Diag}\left((1+x)^{R}(1+x+2 y)^{S}(1+x+y+z)^{-1}\right)=$
${ }_{4} F_{3}\left(\left[\frac{1-(R+S)}{3}, \frac{2-(R+S)}{3}, \frac{3-(R+S)}{3}, \frac{1-S}{2}\right] ;\left[\frac{1-(R+S)}{2}, \frac{2-(R+S)}{2}, 1\right] ;-27 t\right)$.
generalizes and explains [AKM, 2020]

$$
{ }_{3} F_{2}\left(\left[\frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right],\left[1, \frac{2}{3}\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-2 y)^{2 / 3}}{1-x-y-z}\right)
$$

and

$$
{ }_{3} F_{2}\left(\left[\frac{2}{9}, \frac{5}{9}, \frac{8}{9}\right],\left[1, \frac{5}{6}\right] ; 27 t\right)=\operatorname{Diag}\left(\frac{(1-x-2 y)^{1 / 3}}{1-x-y-z}\right) .
$$

