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On a class of hypergeometric diagonals

Given a multivariate power series

g(x1, . . . , xn) =
∑

(i1,...,in)∈Nn

gi1,...,in x i1
1 · · · x

in
n ∈ Q[[x1, . . . , xn]],

define the diagonal Diag(g) as the univariate power series given by

Diag(g) :=
∑
j≥0

gj,...,jt j .
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Diagonals (n = 2)

Diag(g(x , y)) =

...
...

...
...

... . .
.

g0,4x0y4 g1,4x1y4 g2,4x2y4 g3,4x3y4 g4,4x4y4 · · ·
g0,3x0y3 g1,3x1y3 g2,3x2y3 g3,3x3y3 g4,3x4y3 · · ·
g0,2x0y2 g1,2x1y2 g2,2x2y2 g3,2x3y2 g4,2x4y2 · · ·
g0,1x0y1 g1,1x1y1 g2,1x2y1 g3,1x3y1 g4,1x4y1 · · ·
g0,0x0y0 g1,0x1y0 g2,0x2y0 g3,0x3y0 g4,0x4y0 · · ·
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Examples

Let g(x , y) = 1/(1− x − y). Then

Diag(g) = Diag

∑
i ,j≥0

(
i + j

i

)
x i y j

 =
∑
n≥0

(
2n
n

)
tn = (1− 4t)−1/2.

Same for g = 1/(1− x − yz) or g = 1/(1− x − xy − yz).

The Apéry numbers [Straub, 2014]:

∑
n≥0

n∑
k=0

(
n
k

)2(n + k
k

)2

tn = Diag
( 1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4

)
.

7 / 41



Diagonals Hypergeometric Functions Hypergeometric Diagonals Discussion Conclusion

Examples

Let g(x , y) = 1/(1− x − y). Then

Diag(g) = Diag

∑
i ,j≥0

(
i + j

i

)
x i y j

 =
∑
n≥0

(
2n
n

)
tn = (1− 4t)−1/2.

Same for g = 1/(1− x − yz) or g = 1/(1− x − xy − yz).
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Hadamard product

The Hadamard product of two univariate power series:

(f0 + f1 t + f2 t2 + · · · ) ? (h0 + h1 t + h2 t2 + · · · ) = f0h0 + f1h1 t + f2h2 t2 + · · · .

Proposition
For all multivariate power series g(x1, . . . , xn) and h(y1, . . . , ym) we have

Diag(g(x1, . . . , xn) · h(y1, . . . , ym)) = Diag(g(x1, . . . , xn)) ?Diag(h(y1, . . . , ym)).
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Definitions

g(x1, . . . xn) ∈ Q[[x1, . . . , xn]] is rational if g = P(x1, . . . , xn)/Q(x1, . . . , xn) for
polynomials P,Q.
g(x1, . . . xn) is algebraic if there exists a non-zero polynomial P(x1, . . . , xn, t) such
that P(x1, . . . , xn, g) = 0.
f (t) is D-finite (holonomic) if f is the solution of a linear ODE with polynomial
coefficients.
f (t) ∈ Q[[t]] is globally bounded if f has non-zero radius of convergence and there
exists α, β ∈ N such that αf (βt) ∈ Z[[t]].

DIAGr = {f (t) ∈ Q[[t]] : ∃ rational g(x1, . . . , xn) such that f = Diag(g)}
DIAGa = {f (t) ∈ Q[[t]] : ∃ algebraic g(x1, . . . , xn) such that f = Diag(g)}
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Properties, theorems and facts
The representation of f (t) as the diagonal of some (rational) multivariate function is not
unique.

If f1(t) and f2(t) can be represented as diagonals of rational/algebraic functions, then so
can be f1 ? f2.
If g(x1, . . . , xn) is rational, then Diag(g) does not have to rational or algebraic.
If g(x , y) is rational, then Diag(g) is algebraic [Pólya, 1922].

� If f (t) is algebraic, then there exists a rational bivariate g(x , y), such that f = Diag(g)
[Furstenberg, 1967].

� If g(x1, . . . , xn) is rational or algebraic, then Diag(g) is D-finite [Lipshitz, 1988].
� If g(x1, . . . , xn) is rational or algebraic, then f (t) = Diag(g) is globally bounded.
� f (t) is the diagonal of a rational function if and only if it is the diagonal of an algebraic

function: DIAGr = DIAGa =: DIAG [Denef and Lipshitz, 1987].
If g(x1, . . . , xn) is rational, then the coefficient sequence of f (t) = Diag(g) is a multiple
binomial sum. The converse is also true. [Bostan, Lairez, Salvy, 2016]
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Open questions about diagonals

Describe the set DIAG, i.e. which series f (t) can be written as diagonals of
rational/algebraic multivariate functions g(x1, . . . , xn)?
How many variables do we need at least to represent f (t) as the diagonal of some
algebraic/rational g(x1, . . . , xn)?
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Christol’s conjecture

Which series f (t) can be written as diagonals of rational/algebraic multivariate
functions g(x1, . . . , xn)?

(C) Conjecture [Christol, 1987]: If a power series f ∈ Q[[t]] is D-finite and globally
bounded then f ∈ DIAG, i.e. f = Diag(g) for some rational power series
g ∈ Q[[x1, . . . , xn]].
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Christol’s conjecture in the algebraic case. The Hadamard grade

(C) Conjecture [Christol, 1987]: If a power series f ∈ Q[[t]] is D-finite and globally
bounded then f ∈ DIAG.

If f (t) is algebraic then f is both D-finite and globally bounded. Moreover,
Christol’s conjecture holds.
If f (t) = f1(t) ? f2(t) for algebraic series f1(t) and f2(t), then f is both D-finite
and globally bounded. Christol’s conjecture holds again:

f (t) = f1 ? f2 = Diag(g1(x1, x2)) ?Diag(g2(y1, y2)) = Diag(g1(x1, x2) · g2(y1, y2)).

The Hadamard grade [Allouche and Mendès-France, 2011] of a power series f (t)
is the least positive integer h = h(f ) such that f (t) can be written as the
Hadamard product of h algebraic power series.
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On a class of hypergeometric diagonals

Let (x)j := x(x + 1) · · · (x + j − 1) be the rising factorial.
The (generalized) hypergeometric function pFq with rational parameters a1, . . . , ap and
b1, . . . , bq is the univariate power series in Q[[t]] defined by

pFq([a1, . . . , ap], [b1, . . . , bq]; t) :=
∑
j≥0

(a1)j · · · (ap)j
(b1)j · · · (bq)j

t j

j! .

The height of such a hypergeometric function is given by

h = |{1 6 j 6 q + 1 | bj ∈ Z}| − |{1 6 j 6 p | aj ∈ Z}| ,

where bq+1 = 1.
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Examples

For all a ∈ Q we have 1F0([a]; [ ]; t) = 1 + a
1 t + a·(a+1)

1·2 t2 + · · · = (1− t)−a.

2F1 ([1, 1]; [2]; t) = − ln(1− t)/t.

2F1

([1
3 ,−

1
6

]
;
[3

2

]
, t
)

= 1 + (1/3) · (−1/6)
(3/2) · 1 t + (1/3)(4/3) · (−1/6)(5/6)

(3/2)(5/2) · 1 · 2 t2 + · · ·

= (1 +
√

t)1/3 + (1−
√

t)1/3

2 .

3F2([1, 1, 1]; [2, 2]; t) = Li2(t)/t =
∑

n≥1
tn−1

n2 .
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Properties of hypergeometric functions

p+1Fq+1([a1, . . . , ap, c], [b1, . . . , bq, c]; t) = pFq([a1, . . . , ap], [b1, . . . , bq]; t).

It holds that

p1Fq1([a1, . . . , ap1 ], [b1, . . . , bq1 ]; t) ? p2Fq2([c1, . . . , cp2 ], [d1, . . . , dq2 ]; t)
= p1+p2Fq1+q2+1([a1, . . . , ap1 , c1, . . . , cp2 ], [b1, . . . , bq1 , d1, . . . , dq2 , 1]; t).

All hypergeometric functions are D-finite.
pFq is not a polynomial and globally bounded ⇒ q = p − 1.
The case when pFq([a1, . . . , ap], [b1, . . . , bq]; t) is algebraic is completely classified
[Schwarz, 1873; Beukers and Heckman, 1989]
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Algebraicity of the hypergeometric function

Theorem (Interlacing criterion: Beukers and Heckman, 1989)

Assume that the rational parameters {a1, . . . , ap} and {b1, . . . , bp−1, bp = 1} are
disjoint modulo Z. Let N be their common denominator. Then

pFp−1([a1, . . . , ap], [b1, . . . , bp−1]; t)

is algebraic if and only if for all 1 ≤ r < N with gcd(r ,N) = 1 the numbers
{exp(2πiraj), 1 ≤ j ≤ p} and {exp(2πirbj), 1 ≤ j ≤ p} interlace on the unit circle

17 / 41
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Interlacing criterion in practice I

Take f (t) = 3F2([1/4, 3/8, 7/8], [1/3, 2/3]; t). Is f (t) algebraic?

Common denominator of the parameters: N = 24.
We have ϕ(24) = 8, and each r ∈ {1, 5, 7, 11, 13, 17, 19, 23} =: S is coprime to 24.
For each r ∈ S we look at {exp(2πir · 1/4), exp(2πir · 3/8), exp(2πir · 7/8)} and
{exp(2πir · 1/3), exp(2πir · 2/3), exp(2πir · 1)}.

⇒ f (t) is algebraic.
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Global boundedness of the hypergeometric function

Theorem (Christol, 1986)

Assume that the rational parameters {a1, . . . , ap} and {b1, . . . , bp−1, bp = 1} are
disjoint modulo Z. Let N be their common denominator. Then

pFp−1([a1, . . . , ap], [b1, . . . , bp−1]; t)

is globally bounded if and only if for all 1 ≤ r < N with gcd(r ,N) = 1, one encounters
more numbers in {exp(2πiraj), 1 ≤ j ≤ p} than in {exp(2πirbj), 1 ≤ j ≤ p} when
running through the unit circle from 1 to exp(2πi).
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Interlacing criterion in practice II

Is f (t) = 3F2([1/9, 4/9, 5/9], [1/3, 1/2]; t) algebraic or at least globally bounded?

Common denominator of the parameters: N = 18.
We have ϕ(18) = 6, and each r ∈ {1, 5, 7, 11, 13, 17} =: S is coprime to 18.
For each r ∈ S we look at {exp(2πir · 1/9), exp(2πir · 4/9), exp(2πir · 5/9)} and
{exp(2πir · 1/3), exp(2πir · 1/2), exp(2πir · 1)}.

⇒ f (t) is transcendental and not even globally bounded.
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Commercial break

TikZ: \BeHe{30}{1/5}{8/15}{13/15}{1/2}{3/5}

Maple: ishyperdiagalgebraic([[1/5, 8/15, 13/15], [1/2, 3/5]])
>true
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Christol’s conjecture and hypergeometric functions

(C) If a power series f ∈ Q[[t]] is D-finite and globally bounded then f = Diag(g) for
some algebraic power series g ∈ Q[[x1, . . . , xn]].

(C ′) If a hypergeometric function pFp−1([a1, . . . , ap], [b1, . . . , bp−1]; t) ∈ Q[[t]] is
globally bounded then f = Diag(g) for some algebraic power series
g ∈ Q[[x1, . . . , xn]].

(C ′′) If 3F2([a1, a2, a3], [b1, b2]; t) ∈ Q[[t]] is globally bounded then f = Diag(g) for
some algebraic power series g ∈ Q[[x1, . . . , xn]].

(C ′′′) Show that

3F2

([1
9 ,

4
9 ,

5
9

]
,

[1
3 , 1

]
; 729 t

)
= 1 + 60 t + 20475 t2 + 9373650 t3 + · · ·

is the diagonal of some algebraic g ∈ Q[[x1, . . . , xn]].
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Hypergeometric function and Christol’s conjecture: resolved cases
Recall that the height of f (t) = pFp−1([a1, . . . , ap], [b1, . . . , bp−1]; t) is given by

h = |{1 6 j 6 p | bj ∈ Z}| − |{1 6 j 6 p | aj ∈ Z}| ,

where bp = 1.

Assume that h = 1 (all bi ’s are non-integer). Then [Beukers and Heckman, 1989;
Christol, 1990]

f algebraic ⇐⇒ f globally bounded.

Assume that h = p (all bi ’s are integer). Then

f (t) = 1F0([a1], [ ], t) ? 1F0([a2], [ ], t) ? · · · ? 1F0([ap], [ ], t).

Each 1F0([aj ], [ ], t) = (1− t)−aj is algebraic.
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First non-trivial example: 3F2([a, b, c], [d , 1]; t)

Assume f (t) = 3F2([a, b, c], [d , 1]; t) is globally bounded. Is f (t) a diagonal?

We can assume that a, b, c, d ∈ Q \ Z and distinct mod Z. Moreover,
assume 0 < a, b, c, d < 1.
It always holds that

f (t) = 2F1([a, b], [d ]; t) ? 1F0([c], [ ]; t) = 2F1([a, c], [d ]; t) ? 1F0([b], [ ]; t)
= 2F1([b, c], [d ]; t) ? 1F0([a], [ ]; t),

therefore we can assume that each such 2F1 is transcendental.
(C iv ) List with 116 such 3F2’s by [Bostan, Boukraa, Christol, Hassani, Maillard, 2011]:

BBCHM = {3F2([1/3, 5/9, 8/9], [1/2, 1]; t), 3F2([1/4, 3/8, 5/6], [2/3, 1]; t), . . . ,
. . . , 3F2([1/9, 4/9, 5/9], [1/3, 1]; t), . . . }
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A class of hypergeometric diagonals
Main question: when can we write f (t) ∈ Q[[t]] as the diagonal of some
rational/algebraic g(x1, . . . , xn) ∈ Q[[x1, . . . , xn]]?
First non-trivial/unsolved class:

f (t) = 3F2([a, b, c], [d , 1]; t),
such that f (t) is globally bounded.
Explicit example [Christol, 1986]:

f (t) = 3F2([1/9, 4/9, 5/9], [1/3, 1]; t).
List of 116 similar “difficult” examples [BBCHM, 2011].

Recent progress by [Abdelaziz, Koutschan, Maillard, 2020]:

3F2([1/9, 4/9, 7/9], [1/3, 1]; t) and 3F2([2/9, 5/9, 8/9], [2/3, 1]; t)
are diagonals.
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Result of Abdelaziz, Koutschan and Maillard, 2020

3F2

([1
9 ,

4
9 ,

7
9

]
,

[1
3 , 1

]
; 27 t

)
= Diag

(
(1− x − y)2/3

1− x − y − z

)
, and

3F2

([2
9 ,

5
9 ,

8
9

]
,

[2
3 , 1

]
; 27 t

)
= Diag

(
(1− x − y)1/3

1− x − y − z

)
.

More generally,

3F2

([1− R
3 ,

2− R
3 ,

3− R
3

]
, [1, 1− R]; 27 t

)
= Diag () ,

for all R ∈ Q.
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1− x − y − z

)
.

More generally,

3F2

([1− R
3 ,

2− R
3 ,

3− R
3

]
, [1, 1− R];−27 t

)
= Diag

(
(1 + x + y)R(1 + x + y + z)−1

)
,

for all R ∈ Q.
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Main result I

Theorem (Bostan and Y., 2020)

Let N ∈ N \ {0} and b1, . . . , bN ∈ Q with bN 6= 0. Then

Diag((1 + x1)b1(1 + x1 + x2)b2 · · · (1 + x1 + · · ·+ xN)bN )

is a hypergeometric function.
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Complete identity
Let B(k) := −(bk + · · ·+ bN).

uk :=
( B(k)

N − k + 1 ,
B(k) + 1

N − k + 1 , . . . ,
B(k) + N − k

N − k + 1

)
, k = 1, . . . ,N,

vk :=
( B(k)

N − k ,
B(k) + 1

N − k , . . . ,
B(k) + N − k − 1

N − k

)
, k = 1, . . . ,N − 1.

Set vN := (1, 1, . . . , 1) with N − 1 ones and M := N(N + 1)/2. Define
u := [u1, . . . , uN ] and v := [v1, . . . , vN ].

Theorem (Bostan and Y., 2020)

It holds that

Diag((1 + x1)b1(1 + x1 + x2)b2 · · · (1 + x1 + · · ·+ xN)bN ) = MFM−1(u; v ; (−N)Nt).
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Examples

If N = 2 we have

Diag
(

(1 + x)R(1 + x + y)S
)

= 3F2

([−(R + S)
2 ,

−(R + S) + 1
2 ,−S

]
; [−(R + S), 1] ; 4t

)
.

Hence

Diag
(

(1 + x)−1/3(1 + x + y)−1/3
)

= 3F2

([1
3 ,

1
3 ,

5
6

]
;
[2

3 , 1
]

; 4t
)
.

And

Diag
(

(1 + x)1/4(1 + x + y)−3/4
)

= 3F2

([1
4 ,

3
4 ,

3
4

]
;
[1

2 , 1
]

; 4t
)
.
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Examples

Letting N = 3 we obtain

Diag
(

(1 + x)R(1 + x + y)S(1 + x + y + z)T
)

=

6F5

([−(R + S + T )
3 ,

−(R + S + T ) + 1
3 ,

−(R + S + T ) + 2
3 ,

−(S + T )
2 ,

−(S + T ) + 1
2 ,−T

]
;[−(R + S + T )

2 ,
−(R + S + T ) + 1

2 ,−(S + T ), 1, 1
]

;−27t
)
.

Hence

Diag
(

(1 + x + y)S

1 + x + y + z

)
= 3F2

([1− S
3 ,

2− S
3 ,

3− S
3

]
, [1, 1− S];−27 t

)
.
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Proof

Main lemma

Lemma
Let N be a positive integer and b1, . . . , bN ∈ Q such that bN 6= 0. It holds that

[xk1
1 · · · x

kN
N ](1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN

=
(

bN
kN

)(
bN−1 + bN − kN

kN−1

)
· · ·
(

b1 + · · ·+ bN − kN − · · · − k2
k1

)
.
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Proof

Proof of main lemma

Proof.

[xk1
1 · · · x

kN−1
N−1 · x

kN
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Proof

Sketch of proof of Main Theorem

To show:

Diag((1 + x1)b1(1 + x1 + x2)b2 · · · (1 + x1 + · · ·+ xN)bN ) = MFM−1(u; v ; (−N)Nt).

By Lemma:

[tn]Diag((1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN ) =

By definition:

[tn]MFM−1(u; v ; (−N)Nt) =
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Algebraicity of Diag((1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN )

Corollary
Let f (t) = Diag((1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN ), then f is algebraic if and only if
N = 2 and b2 ∈ Z, or N = 1.

Sketch of proof.

MFM−1(u; v ; t) = MFM−1([u(1), . . . , u(N)]; [v (1), . . . , v (N−1), 1, 1, . . . , 1︸ ︷︷ ︸
N−1 times

]; t).

We can have at most one cancellation between u(k) and a 1. By Christol’s theorem,
N ≤ 2.
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Hadamard grade of Diag((1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN )

Recall that the Hadamard grade of f (t) is the least positive integer h = h(f ) such that
f (t) can be written as the Hadamard product of h algebraic power series.

Corollary
The Hadamard grade of Diag((1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN ) is finite and ≤ N.
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MFM−1(u; v ; t) = NFN−1(u(1); v (1); t)?N−1FN−2(u(2); v (2); t)?· · ·?1F0(u(N); ; t), and

N−k+1FN−k(u(k); v (k); t) = NFN−1

([ B(k)
N − k + 1 ,

B(k) + 1
N − k + 1 , . . . ,

B(k) + N − k
N − k + 1

]
;[ B(k)

N − k ,
B(k) + 1

N − k , . . . ,
B(k) + N − k − 1

N − k

]
; t
)

is algebraic.
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The list BBCHM
(C iv ) Bostan, Boukraa, Christol, Hassani and Maillard produced in 2011 a list with 116

3F2’s such that:
3F2([a, b, c], [d , 1]; t) is globally bounded.
a, b, c, d ∈ Q \ Z, distinct mod Z, and 0 < a, b, c, d < 1.
Each 2F1([a, b], [d ]; t), 2F1([a, c], [d ]; t), 2F1([b, c], [d ]; t) is transcendental.

In 2020, Abdelaziz, Koutschan and Maillard showed that two elements in this list
are diagonals by constructing an explicit representation.

New idea: write
f (t) = 3F2([a, b, c], [d , 1]; t) = 2F1([a, b], [r ]; t) ? 2F1([c, r ], [d ]; t) = · · · =

= 3F2([a, b, c], [d , r ]; t) ? 1F0([r ], [ ]; t)
for any r ∈ Q.
If for some r , both 2F1([a, b], [r ]; t) and 2F1([c, r ], [d ]; t) are algebraic, or
3F2([a, b, c], [d , r ]; t) is algebraic, then f is a diagonal.
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for any r ∈ Q.

If for some r , both 2F1([a, b], [r ]; t) and 2F1([c, r ], [d ]; t) are algebraic, or
3F2([a, b, c], [d , r ]; t) is algebraic, then f is a diagonal.
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Example I

Take f (t) = 3F2([1/4, 3/8, 7/8], [1/3, 1]; t).

We find that

f1 = 2F1([3/8, 7/8], [3/4]; t) and f2 = 2F1([1/4, 3/4], [1/3]; t)

are algebraic.
Hence f1 = Diag(g1(x1, x2)) and f2 = Diag(g2(y1, y2)) for rational functions
g1, g2.
We have

f (t) = f1 ? f2 = Diag(g1(x1, x2)) ?Diag(g2(y1, y2)) = Diag(g1(x1, x2) · g2(y1, y2)),

therefore f is a diagonal.

37 / 41



Diagonals Hypergeometric Functions Hypergeometric Diagonals Discussion Conclusion

Example I

Take f (t) = 3F2([1/4, 3/8, 7/8], [1/3, 1]; t).
We find that

f1 = 2F1([3/8, 7/8], [3/4]; t) and f2 = 2F1([1/4, 3/4], [1/3]; t)

are algebraic.

Hence f1 = Diag(g1(x1, x2)) and f2 = Diag(g2(y1, y2)) for rational functions
g1, g2.
We have

f (t) = f1 ? f2 = Diag(g1(x1, x2)) ?Diag(g2(y1, y2)) = Diag(g1(x1, x2) · g2(y1, y2)),

therefore f is a diagonal.

37 / 41



Diagonals Hypergeometric Functions Hypergeometric Diagonals Discussion Conclusion

Example I

Take f (t) = 3F2([1/4, 3/8, 7/8], [1/3, 1]; t).
We find that

f1 = 2F1([3/8, 7/8], [3/4]; t) and f2 = 2F1([1/4, 3/4], [1/3]; t)

are algebraic.
Hence f1 = Diag(g1(x1, x2)) and f2 = Diag(g2(y1, y2)) for rational functions
g1, g2.

We have

f (t) = f1 ? f2 = Diag(g1(x1, x2)) ?Diag(g2(y1, y2)) = Diag(g1(x1, x2) · g2(y1, y2)),

therefore f is a diagonal.

37 / 41



Diagonals Hypergeometric Functions Hypergeometric Diagonals Discussion Conclusion

Example I

Take f (t) = 3F2([1/4, 3/8, 7/8], [1/3, 1]; t).
We find that

f1 = 2F1([3/8, 7/8], [3/4]; t) and f2 = 2F1([1/4, 3/4], [1/3]; t)

are algebraic.
Hence f1 = Diag(g1(x1, x2)) and f2 = Diag(g2(y1, y2)) for rational functions
g1, g2.
We have

f (t) = f1 ? f2 = Diag(g1(x1, x2)) ?Diag(g2(y1, y2)) = Diag(g1(x1, x2) · g2(y1, y2)),

therefore f is a diagonal.
37 / 41



Diagonals Hypergeometric Functions Hypergeometric Diagonals Discussion Conclusion

Example II: alternative proof that 3F2([1/9, 4/9, 7/9], [1/3, 1]; t) ∈ DIAG
Take f (t) = 3F2([1/9, 4/9, 7/9], [1/3, 1]; t).

We find that
f1 = 3F2([1/9, 4/9, 7/9], [1/3, 2/3]; t)

is algebraic.

Hence f1 = Diag(g1(x1, x2)) and f2 = 1F0([2/3], [ ]; t) = Diag(g2(y1, y2)) for
rational functions g1, g2.
We have
f (t) = f1 ? f2 = Diag(g1(x1, x2)) ?Diag(g2(y1, y2)) = Diag(g1(x1, x2) · g2(y1, y2)),
therefore f is a diagonal.
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New Results on the BBCHM list

By writing

3F2([a, b, c], [d , 1]; t) = 2F1([a, b], [r ]; t) ? 2F1([c, r ], [d ]; t) = . . . ,

and searching for r ∈ Q such that 2F1([a, b], [r ]; t) and 2F1([c, r ], [d ]; t) are
algebraic, we can resolve 28 cases of the list. Then 116− 28 = 88 remain.
By writing

3F2([a, b, c], [d , 1]; t) = 3F2([a, b, c], [d , r ]; t) ? 1F0([r ], [ ]; t),

we can resolve 12 more cases. So 88− 12 = 76 remain.
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Limitations

We can also write

3F2([a, b, c], [d , 1]; t) = 3F2([a, b, s], [d , r ]; t) ? 2F1([c, r ], [s]; t) = . . .

= 3F2([a, b, c], [r , s]; t) ? 2F1([r , s], [d ]; t),

however this does not resolve any new cases.

Assuming the Rohrlich-Lang conjecture, [Rivoal and Roques, 2014] could prove
that

3F2

([1
7 ,

2
7 ,

4
7

]
,

[
1, 1

2

]
, 2401 t

)
= 1 + 112 t + 103488 t2 + 139087872 t3 + · · ·

has infinite Hadamard grade.
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Summary and Conclusion

Christol’s conjecture is still widely open, but we are getting (a bit) closer.

The functions N(N+1)/2FN(N+1)/2−1([u(1), . . . , u(N)]; [v (1), . . . , v (N)]; (−N)Nt) are
globally bounded and diagonals of algebraic/rational functions.
The main identities of Abdelaziz, Koutschan and Maillard fit in a larger picture.
The function f (t) = Diag((1 + x1)b1 · · · (1 + x1 + · · ·+ xN)bN ) is hypergeometric.

f (t) is algebraic if and only if N = 2 and b2 ∈ Z, or N = 1.
f (t) has finite Hadamard grade.

40 cases of the list BBCHM are resolved.
Considerations with the Hadamard grade show that we need a new viewpoint.
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Main result II

Theorem (Bostan and Y., 2020)

Let N ∈ N \ {0} and b1, . . . , bN ∈ Q with bN 6= 0 and bN−1 + bN = −1. Then for any
b ∈ Q,

Diag((1 + x1)b1(1 + x1 + x2)b2 · · · (1 + x1 + · · ·+ xN)bN · (1 + x1 + · · ·+ 2 xN−1)b)

is a hypergeometric function.
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Complete identity
Let B(k) := −(bk + · · ·+ bN + b).

uk :=
( B(k)

N − k + 1 ,
B(k) + 1

N − k + 1 , . . . ,
B(k) + N − k

N − k + 1

)
, k = 1, . . . ,N − 2

vk :=
( B(k)

N − k ,
B(k) + 1

N − k , . . . ,
B(k) + N − k − 1

N − k

)
, k = 1, . . . ,N − 2.

Set uN−1 := −(bN−1 + bN + b)/2 = (1− b)/2, uN = −bN and vN−1 := (1, 1, . . . , 1)
with N − 1. M := N(N + 1)/2 and define u := [u1, . . . , uN ] and v := [v1, . . . , vN−1].

Theorem (Bostan and Y., 2020)

It holds that

Diag((1 + x1)b1(1 + x1 + x2)b2 · · ·(1 + x1 + · · ·+ xN)bN (1 + x1 + · · ·+ 2 xN−1)b)
= MFM−1(u; v ; (−N)Nt). 41 / 41
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Example
For N = 3 and R = b1, b = S, b2 = 0, b3 = −1:

Diag
(

(1 + x)R(1 + x + 2 y)S(1 + x + y + z)−1
)

=

4F3

([1− (R + S)
3 ,

2− (R + S)
3 ,

3− (R + S)
3 ,

1− S
2

]
;
[1− (R + S)

2 ,
2− (R + S)

2 , 1
]

;−27t
)
.

generalizes and explains [AKM, 2020]

3F2

([1
9 ,

4
9 ,

7
9

]
,

[
1, 2

3

]
; 27 t

)
= Diag

(
(1− x − 2 y)2/3

1− x − y − z

)
and

3F2

([2
9 ,

5
9 ,

8
9

]
,

[
1, 5

6

]
; 27 t

)
= Diag

(
(1− x − 2 y)1/3

1− x − y − z

)
.
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