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Two sequences

(an)n≥0 = (1 , −48300 , 7981725900 , −1469166887370000, . . . )

(bn)n≥0 = (1 , −144900 , 88464128725 , −62270073456990000, . . . )
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Origin of an and bn

In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

un−3 + 20
(
4500n2 − 18900n + 19739

)
un−2 + 80352000n(5n − 1)(5n − 2)(5n − 4)un+

+25
(
2592000n4 − 16588800n3 + 39118320n2 − 39189168n + 14092603

)
un−1 = 0,

with initial terms u0 = 1, u1 = −161/(210 · 35) and u2 = 26605753/(223 · 312 · 52).
Recursion comes from physics: integral over a moduli space (“topological ODE”)
[Bertola et al., 2015].

Problem (Zagier, 2018)

Find (α, β) ∈ Q∗ ×Q∗ such that un · (α)n · (β)n · γn ∈ Z for some γ ∈ Z∗.
(x)n := x · (x + 1) · · · (x + n − 1).

[Yang and Zagier]: an = un · (3/5)n · (4/5)n · (210 · 35 · 54)n ∈ Z,
[Dubrovin and Yang]: bn = un · (2/5)n · (9/10)n · (212 · 35 · 54)n ∈ Z.
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Mystery of an and bn

“Yang and I found a formula showing that the numbers an are integers [...]”
“Dubrovin and Yang found that the numbers bn are also integral and that in this
case the generating function [...] is actually algebraic!”
“So this is a very mysterious example” – [Zagier, 2018]
“My presumed arithmetic intuition [...] was entirely broken” – [Wadim Zudilin]

Problem

Investigate the nature of (an)n≥0, (bn)n≥0 and similar sequences.

Theorem (Bostan, Weil, Y.)

The generating functions of both (an)n≥0 and (bn)n≥0 are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier’s problem: (cn)n≥0, . . . , (in)n≥0 ∈ Z.
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Definitions and interactions

Algebraic

Diagonals

P-finite/D-finite

√
1− x +

√
1 + x

∑
n bnx

n∑
n

∑
n

k=0
(
n

k
)
2 (
n+kk

)
2
x n

∑ n

( 2n
n

) 2 x
n

exp(x)

∑
n anx

n

A sequence (un)n≥0 is P-finite, if it
satisfies a linear recurrence with poly-
nomial coefficients:

cr (n)un+r + · · ·+ c0(n)un = 0.

un =
(2n
n

)
satisfies

(n + 1)un+1 − (2 + 4n)un = 0.
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A power series f (x) ∈ Q[[x ]] is D-finite
if it satisfies a linear differential equa-
tion with polynomial coefficients:

pn(x)f
(n)(x) + · · ·+ p0(x)f (x) = 0.

This equation can be rewritten: L · f = 0,

L = pn(x)∂
n + · · ·+ p0(x) ∈ Q(x)[∂],

where ∂ := d
dx .

√
1− x +

√
1 + x satisfies

4(x2 − 1)f ′′(x) + 4xf ′(x)− f (x) = 0.

L = 4(x2 − 1)∂2 + 4x∂ − 1.
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A series f (x) ∈ Q[[x ]] is a Diagonal if
there exists a rational function

R =
∑

i1,...,in≥0

ci1,...,int
i1
1 · · · t inn ∈ Q(t1, . . . , tn)

such that

f (x) = Diag(R) :=
∑
k≥0

ck,...,kx
k .

Diag
1

1− t1 − t2
= Diag

∑
i,j≥0

(
i + j

j

)
t i1t

j
2

=
∑
k≥0

(
2k

k

)
xk =

1√
1− 4x
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Back to an and bn

(an)n and (bn)n are P-finite sequences ⇒ generating functions are D-finite.

La = 1800x (7x − 62)
(
x2 + 50x + 20

)
∂2 + 720(42x3 + 173x2 − 14230x − 620)∂

+ 6048x2 − 139453x − 249550 ∈ Q(x)[∂],

Lb = 90000x3 (2911x + 310)
(
x2 + 50x + 20

)
∂4

+ 18000x2
(
154283x3 + 5185005x2 + 1675710x + 142600

)
∂3

+ 50x
(
147290778x3 + 2740219655x2 + 566777510x + 37497600

)
∂2

+ 5
(
919899288x3 + 5629046605x2 + 1348939210x + 10713600

)
∂

+ 18
(
13937868x2 − 1076845x + 1247750

)
∈ Q(x)[∂].

The generating functions of (an)n≥0 and (bn)n≥0 solve La · y = 0 and Lb · y = 0.
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Main problem

Stanley’s problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?

Guess & Prove approach – but algebraicity degree can be arbitrarily high.

Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].

Solved in theory [Singer, 1979, 2014] – but usually not applicable in practice.

Solved for hypergeometric functions [Schwarz, 1873], [Beukers,Heckman, 1989].

Disproving algebraicity often easier in practice [Flajolet, 1987], [Bostan, 2017].

Tests for justifying algebraicity based on conjectures or numerics:
Grothendieck-Katz conjecture (integrality of coefficients ↔ algebraic solutions)
Monodromy group computation (cardinality of orbit = algebraicity degree)

Applied differential Galois theory can prove algebraicity in practice.
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Proving transcendence of D-finite functions

Stanley’s problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?

Some useful properties of algebraic functions f (x) =
∑

n≥0 unx
n:

1 Coefficient sequence is globally bounded: unw
n ∈ Z. log(1− x) ̸∈ Q(x)

2 Special asymptotics: un = ρnnα

Γ(α+1)

∑n
i=1 Ciω

n
i + O(ρnnβ).

∑
n≥0

(2n
n

)2
xn ̸∈ Q(x)

3 Evaluation at algebraic numbers: f (α) ∈ Q for α ∈ Q. exp(x) ̸∈ Q(x)

4 Minimal ODE has basis of solutions with no log’s.

André-Christol conjecture: 1 + 4 also sufficient.
8 / 15
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Differential Galois theory: proving algebraicity

L · y = 0 is equivalent to Y ′ = A(x)Y , where A(x) ∈ Mn×n(k) and k = Q(x).

Picard-Vessiot extension: K = k(U), where U is a fundamental solution matrix.

The differential Galois group G is the group of field automorphisms of K which
commute with the derivation and leave all elements of k invariant:

G := Aut∂(K/k) = {σ ∈ Aut(K ) : σ|k ≡ idk and σ ◦ ∂ ≡ ∂ ◦ σ}.

G is a linear algebraic subgroup of GLn(Q).

G stabilizes the ideal of differential relations between solutions.

Moreover:

Theorem (Kolchin, 1948)

L · y = 0 has a basis of algebraic solutions if and only if G is finite.

In practice G is very difficult to compute [Hrushovski, 2002], [Feng, 2015],
[van der Hoeven, 2007], [Amzallag, Minchenko, Pogudin, 2018], [Sun, 2019].
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Differential Galois theory: proving algebraicity

L · y = 0 is equivalent to Y ′ = A(x)Y , where A(x) ∈ Mn×n(k) and k = Q(x).

G is the differential Galois group.

Galois-Lie algebra g := Lie(G ): Lie algebra of G , i.e. the tangent space of G at id.

g measures the transcendence of K over k :

Theorem (Kolchin, 1948)

If K is the Picard-Vessiot extension of Y ′ = A(x)Y and g = Lie(G ), then

dimC(G ) = dimC(g) = trdeg(K/k).

Theory and algorithm for computing g [Barkatou, Cluzeau, Di Vizio, Weil, 2020].

Idea: Compute symmetric powers of L and find rational solutions of them.
These solutions yield information for g via solving a linear system.
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Toy example

The operator L = (4x2 − 4)∂2 + 4x∂ − 1 has a basis of algebraic solutions:
√
1 + x +

√
1− x and

√
1 + x −

√
1− x .

L · y = 0 is equivalent to Y ′ = A(x)Y where A(x) =

(
0 1
1

4x2−4
−4x
4x2−4

)
.

If Y = (y1, y2)
t is a solution to Y ′ = A(x)Y then Y = (y21 , 2y1y2, y

2
2 )

t is a

solution to the symmetric square system Y ′ = A(2)(x)Y , where now

A(2)(x) =
1

4(x2 − 1)

0 4x2 − 4 0
2 −4x 8x2 − 8
0 1 −8x

 .

It has rational solutions! F1 = (4x , 4, x/(x2 − 1))t , F2 = (−4, 0, 1/(x2 − 1))t .
If M ∈ g(2) then MF = 0 and M comes from a symmetric square. I.e. M satisfies2m1,1 m1,2 0

2m2,1 m1,1 +m2,2 2m1,2

0 m2,1 2m2,2

 · Fℓ =

0
0
0

 , mi,j ∈ Q(x), ℓ = 1, 2.

The only solution is mi ,j = 0. Hence g(2) = g = 0. All solutions of L are algebraic.
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The generating sequence of (bn)n is algebraic (known to Dubrovin & Yang)

For Lb same method as in the toy example works.

Lb · y = 0 equivalent to Y ′ = A(x)Y for A(x) ∈ M4×4(Q(x)).

The fifth symmetric power Y ′ = A(5)(x)Y has rational solutions.
> A5 := SymmetricPowerSystem(A,5):

A(5)(x) ∈ MN×N(Q(x)), where N =
(4+5−1

4−1

)
= 56.

Finding the rational solutions takes ≈2 min on a regular PC.
> V:=RationalSolutions([A5],[x]):

The corresponding system in mi ,j has no non-zero solutions in Q(x) (≈15 sec).
> G:=Matrix(4,4,symbol=g):

> G5 := SymmetricPowerSystem(G,5):

> sol := solve(convert(G5.V, set)):

sol = 0 ⇒ gb = 0, therefore Lb has only algebraic solutions.
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The generating sequence of (an)n is algebraic (new)

For the generating function of (an)n≥0 same method as for (bn)n≥0 works.

The 20th symmetric power of La has rational solutions (≈4 sec).
> A20 := SymmetricPowerSystem(A,20):

> V:=RationalSolutions([A20],[x]):

A(20) ∈ MN×N(Q(x)), where N =
(2+20−1

2−1

)
= 21.

The corresponding system in mi ,j has no non-zero solutions in Q(x) (≈0.4 sec).
> G:=Matrix(2,2,symbol=g):

> G20 := SymmetricPowerSystem(G,20):

> sol := solve(convert(G20.V, set)):

sol = 0 ⇒ ga = 0, therefore La has only algebraic solutions.
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DYZ-like numbers

Zagier’s problem

Find (α, β) ∈ Q∗ ×Q∗ such that un · (α)n · (β)n · γn ∈ Z for some γ ∈ Z∗.
(x)n := x · (x + 1) · · · (x + n − 1).

# u v ODE order degree # u v ODE order degree
an 3/5 4/5 2 120 fn 19/60 49/60 4 155520
bn 2/5 9/10 4 120 gn 19/60 59/60 4 46080
cn 1/5 4/5 2 120 hn 29/60 49/60 4 46080
dn 7/30 9/10 4 155520 in 29/60 59/60 4 155520
en 9/10 17/30 4 155520

Theorem (Bostan, Weil, Y., 2023)

The sequences (an)n≥0, (bn)n≥0, (cn)n≥0, . . . , (in)n≥0 are solutions to Zagier’s problem.

Estimates for degrees based on numerical monodromy group computations.
Proof of algebraicity: Done: an, bn, cn. In progress: dn, en, fn, gn, hn, in.
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Summary

Both sequences (an)n≥0 and (bn)n≥0 have algebraic generating functions.

Seven more sequences are solutions to Zagier’s problem.

Differential Galois theory allows efficient proving that D-finite series is algebraic.
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Bonus: explicit solution for
∑

n≥0 anx
n

We saw that
∑

n≥0 anx
n is a solution of

q2(x)y
′′(x) + q1(x)y

′(x) + q0(x)y(x) = 0, where (1)

q2(x) = 5x(302400x − 31)(373248000x2 + 216000x + 1),

q1(x) = 1354442342400000x3 + 64571904000x2 − 61473600x − 31,

q0(x) = 300(902961561600x2 − 240974784x − 4991).

Maple’s dsolve(deq) shows that every solution of (1) is a linear combination of

u1(x) · 2F1
[
−1/60 11/60

2/3
;
p1(x)

p2(x)

]
and u2(x) · 2F1

[
19/60 31/60

4/3
;
p1(x)

p2(x)

]
,

where 2F1
[
a b
c ; x

]
is the Gaussian hypergeometric function

2F1

[
a b

c
; x

]
:=

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
, (u)j := u(u + 1) · · · (u + j − 1).
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Bonus: Integrality of the sequences

Recall:

un−3 + 20
(
4500n2 − 18900n + 19739

)
un−2 + 80352000n(5n − 1)(5n − 2)(5n − 4)un+

+25
(
2592000n4 − 16588800n3 + 39118320n2 − 39189168n + 14092603

)
un−1 = 0,

with initial terms u0 = 1, u1 = −161/(210 · 35) and u2 = 26605753/(223 · 312 · 52).
In [Dubrovin, Yang, Zagier, 2022] proven:

un = 6−5n ·
5n/2∑
s=0

(−9)s

102s
·

(
1
5

)
3n−s

s!(5n − 2s)!
.

Count primes à la Legendre:(
1
5

)
3n−s

(α)n(β)n

s!(5n − 2s)!
∈ Z[1/30] for s, n ∈ N,

and for (α, β) in the presented table.
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Bonus: Origin of (cn)n≥0

For a simple Lie-algebra (g, [·, ·]) [Bertola, Dubrovin, Yang, 2015] define the
so-called topological ordinary differential equation

d

dλ
M = [M,Λ],

where M = M(λ) and Λ = I+ + λE−θ, for a principal nilpotent element
I+ =

∑n
i=1 Ei and (normalized) E−θ ∈ g−θ.

For g = sln+1(C) one finds

Λ =

(
0 In
λ 0

)
, In is the n × n identity matrix.

and the (normalized) (dominant) ODE reads

64800000x3(x + 155)y (iv)(x) + (x2 − 1220x + 623875)y(x) + 7200(10x2 + 3209x + 133920)y ′(x)+

18000x(5x2 + 6091x + 1874880)y ′′(x) + 12960000x2(18x + 3565)y ′′′(x) = 0

Then
∑

n≥0 cnx
n is the unique power series solution.
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