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Introduction
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Two sequences

= (1, —48300, 7981725900, —1469166887370000, .. .)

= (1, —144900, 88464128725, —62270073456990000, .. .)
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Introduction
00000

Origin of a, and b,

m In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:
Un—3 + 20 (4500n% — 18900n + 19739) u,_» + 80352000n(5n — 1)(5n — 2)(5n — 4)un+
+25 (2592000n4 — 16588800n° + 3911832012 — 39189168n + 14092603) Up—1 =0,

with initial terms up = 1, u; = —161/(219-3%) and u; = 26605753/(223 - 312 . 52).
m Recursion comes from physics: integral over a moduli space (“topological ODE")
[Bertola et al., 2015].
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m In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:

Un—3 + 20 (4500n% — 18900n + 19739) u,_» + 80352000n(5n — 1)(5n — 2)(5n — 4)un+
+25 (2592000n* — 16588800n° + 391183200 — 39189168n + 14092603) u,_1 = 0,
with initial terms up = 1, u; = —161/(219-3%) and u; = 26605753/(223 - 312 . 52).

m Recursion comes from physics: integral over a moduli space (“topological ODE")
[Bertola et al., 2015].

Problem (Zagier, 2018)
Find (a, 8) € Q* x Q* such that u,, - (), - (8)n - Y" € Z for some v € Z*.
(X)n=x-(x+1)---(x+n-1).

m [Yang and Zagier]: =y (3/5)n- (4/5)n - (210 .35. 54)n cZ
m [Dubrovin and Yang]: b, = un - (2/5)n - ( )n-(212.35.5%1 ¢ 7,
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Mystery of a, and b,

m “Yang and | found a formula showing that the numbers =, are integers |...]"
“Dubrovin and Yang found that the numbers b, are also integral and that in this
case the generating function [...] is actually algebraic!”

m “So this is a very mysterious example” — [Zagier, 2018]

m "My presumed arithmetic intuition [...] was entirely broken” — [Wadim Zudilin]
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Mystery of a, and b,

m “Yang and | found a formula showing that the numbers =, are integers |...]"
“Dubrovin and Yang found that the numbers b,, are also integral and that in this
case the generating function [...] is actually algebraic!”

m “So this is a very mysterious example” — [Zagier, 2018]

m "My presumed arithmetic intuition [...] was entirely broken” — [Wadim Zudilin]

Investigate the nature of , and similar sequences.
Theorem (Bostan, Weil, Y.)

The generating functions of both and are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier's problem: (cn)n>0, - - -, (in)n>0 € Z.
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Introduction Main problem

Proving algebraicity
00000

Future work and summary
00

Definitions and interactions

P-finite/D-finite

A sequence (up)p>o is P-finite, if it
satisfies a linear recurrence with poly-
nomial coefficients:

Diagonals

V1—-x++vV1+x

_ cr(Mupyr + -+ co(n)u, = 0.
Algebraic

u, = (2””) satisfies

(n + ].)Un«‘rl - (2 + 4”)“!7 = 0.
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Definitions and interactions

A power series f(x) € Q[x] is D-finite
P-finite/D-finite if it satisfies a linear differential equa-
tion with polynomial coefficients:

Diagonals

pa(X)F((x) + - - - + po(x)f(x) = 0.

V1—x+

Algebraic

This equation can be rewritten: L-f =0,
L= pn(x)0" + -+ + po(x) € Q(x)[4],

— d
where 9 = Ix-

V1 — x ++/1 + x satisfies
4(x2 — 1" (x) + 4xf'(x) — f(x) = 0.
exp(x) L=4(x* —1)0% + 4x0 — 1.
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Proving algebraicity Future work and summary

00

Definitions and interactions

P-finite/D-finite

Diagonals

VvV1—x++V1+x
Algebraic

A series f(x) € Q[x] is a Diagonal if
there exists a rational function

R= > cy it th €Q(tr,... tn)

1yeensin>0
such that

f(x) = Diag(R) =) _ ck,...kx".
k>0

. 1 . AV,
ngizngg et
“‘lftlftg iag <1>12

ij>0

— X =  —
k V1 —4x

k>0
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Back to a, and b,

] and are P-finite sequences = generating functions are D-finite.

= 1800x (7x — 62) (x* + 50x + 20) & + 720(42x> + 173x> — 14230x — 620)9
+ 6048x% — 139453x — 249550 € Q(x)[d],

= 90000x> (2911x + 310) (x* + 50x + 20) 0*
+ 18000x” (154283x> + 5185005x° + 1675710x + 142600) 9°
+ 50x (147290778x> + 2740219655x° + 566777510 + 37497600) 9°
+ 5 (919899288 -+ 5629046605x + 1348939210x -+ 10713600) O
+ 18 (13937868x> — 1076845x + 1247750) € Q(x)[9].

m The generating functions of and solve [,-y=0and [, -y=0.
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Given a D-finite series, how to prove or disprove that it is algebraic?
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m Solved in theory [Singer, 1979, 2014] — but usually not applicable in practice.

m Solved for hypergeometric functions [Schwarz, 1873], [Beukers,Heckman, 1989].
m Disproving algebraicity often easier in practice [Flajolet, 1987], [Bostan, 2017].
"

Tests for justifying algebraicity based on conjectures or numerics:

m Grothendieck-Katz conjecture (integrality of coefficients <+ algebraic solutions)
m Monodromy group computation (cardinality of orbit = algebraicity degree)

Applied differential Galois theory can prove algebraicity in practice.
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Proving algebraicity
©00000

Proving transcendence of D-finite functions

Stanley’s problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?

Some useful properties of algebraic functions f(x) = >_ - unx™:

Coefficient sequence is globally bounded: u,w" € Z. log(1 — x) & Q(x)
. . npo n 2 n ™

Special asymptotics: up = 57y 2oimy Ciwf' + O(p"n®). 5, o (77) %" ¢ Qlx)

Evaluation at algebraic numbers: f(a) € Q for a € Q. exp(x) € Q(x)

. . : . , n 2 2
Minimal ODE has basis of solutions with no log's. Z Z (” z k> <Z> X" ¢ Q)

n>0 k=0

André-Christol conjecture: ll + B also sufficient.
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Differential Galois theory: proving

L-y =0is equivalent to Y’ = A(x)Y, where A(x) € M™"(k) and k = Q(x).
Picard-Vessiot extension: K = k(U), where U is a fundamental solution matrix.

The differential Galois group G is the group of field automorphisms of K which
commute with the derivation and leave all elements of k invariant:

G = Autyg(K/k) = {0 € Aut(K): ol =idgy and c 00 = Do 0 }.

G is a linear algebraic subgroup of GL,(Q).

m G stabilizes the ideal of differential relations between solutions.
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Differential Galois theory: proving

m L.y =0isequivalent to Y’ = A(x)Y, where A(x) € M"™"(k) and k = Q(x).
m Picard-Vessiot extension: K = k(U), where U is a fundamental solution matrix.

m The differential Galois group G is the group of field automorphisms of K which
commute with the derivation and leave all elements of k invariant:

G = Autyg(K/k) = {0 € Aut(K): ol =idgy and c 00 = Do 0 }.

m G is a linear algebraic subgroup of GL,(Q).
m G stabilizes the ideal of differential relations between solutions. Moreover:

Theorem (Kolchin, 1948)

L -y =0 has a basis of algebraic solutions if and only if G is finite.

m In practice G is very difficult to compute [Hrushovski, 2002], [Feng, 2015],
[van der Hoeven, 2007], [Amzallag, Minchenko, Pogudin, 2018], [Sun, 2019].
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m L.y =0is equivalent to Y/ = A(x)Y, where A(x) € M™"(k) and k = Q(x).

m G is the differential Galois group.

m Galois-Lie algebra g := Lie(G): Lie algebra of G, i.e. the tangent space of G at id.
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Differential Galois theory: proving

m L.y =0is equivalent to Y/ = A(x)Y, where A(x) € M™"(k) and k = Q(x).

m G is the differential Galois group.

m Galois-Lie algebra g := Lie(G): Lie algebra of G, i.e. the tangent space of G at id.
m g measures the transcendence of K over k:

Theorem (Kolchin, 1948)
If K is the Picard-Vessiot extension of Y' = A(x)Y and g = Lie(G), then

dimc(G) = dime(g) = trdeg(K/k).

m Theory and algorithm for computing g [Barkatou, Cluzeau, Di Vizio, Weil, 2020].

m ldea: Compute symmetric powers of L and find rational solutions of them.

These solutions yield information for g via solving a linear system.
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Proving algebraicity
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Toy example

m The operator L = (4x? — 4)9% + 4x0 — 1 has a basis of algebraic solutions:
Vit x++vV1—xand V1+x—+vV1—x.

m L-y=0is equivalent to Y’ = A(x)Y where A(x) = ( 9 _};X ) .
4x2-4  4x2-4
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Proving algebraicity
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Toy example

m The operator L = (4x? — 4)9% + 4x0 — 1
0 1 )
1 —4x .
4x2—4  4x2—-4

m If Y = (y1,y2)! is a solution to Y/ = A(x)Y then Y = (yZ,2y1y2,y3)t is a
solution to the symmetric square system Y’ = A(®)(x)Y, where now

1 0 4x*—4 0
A(z)(X) = m 2 —4x 8X2 —-81.
0

1 —8x

m L.y =0is equivalent to Y’ = A(x)Y where A(x) =

YO
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Toy example

m The operator L = (4x? — 4)9% + 4x0 — 1

0 1
m L.y =0is equivalent to Y’ = A(x)Y where A(x) = ( 1 _4x ) .
4x2—4  4x2—4
If Y = (y1,y2)t is a solution to Y/ = A(x)Y then Y = (y2,2y1y2, y3)! is a
solution to the symmetric square system Y’ = A(®)(x)Y, where now

1 0 4x*—4 0
A(z)(X) = m 2 —4x 8X2 —-81.

0 1 —8x
It has rational solutions! /- — (4x, 4, x/(x? — 1)), Fo = (—4.0,1/(x* — 1))
If M € g@ then MF =0 and M comes from a symmetric square. l.e. M satisfies

2m1,1 m1’2 0 0
2m2’1 miya + ma 2 2m172 . F[ =10 R mj S Q(X)7£ = 1,2

0 m271 2m272 0

m The only solution is m; ; = 0. Hence 9@ = g = 0. All solutions of L are algebraic.
11/15




Proving algebraicity
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The generating sequence of (b,), is algebraic (known to Dubrovin & Yang)

m For [, same method as in the toy example works.
-y = 0 equivalent to Y’ = A(x)Y for A(x) € M¥***(Q(x)).

The fifth symmetric power Y’ = A(®)(x)Y has rational solutions.
> A5 := SymmetricPowerSystem(A,5):

AB)(x) € MN*N(Q(x)), where N = (ﬁf}l) = 56.

Finding the rational solutions takes ~2 min on a regular PC.
> V:=RationalSolutions ([A5], [x]):

m The corresponding system in m;; has no non-zero solutions in Q(x) (/15 sec).
> G:=Matrix(4,4,symbol=g):
> G5 := SymmetricPowerSystem(G,5):
> sol := solve(convert(G5.V, set)):
m sol =0 = g, =0, therefore /., has only algebraic solutions.
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The generating sequence of (a,), is algebraic (new)

m For the generating function of same method as for works.

m The 20th symmetric power of |, has rational solutions (/4 sec).
> A20 := SymmetricPowerSystem(A,20):
> V:=RationalSolutions([A20], [x]):

m AR0) ¢ MNVXN(Q(x)), where N = (*12%1) = 21.
m The corresponding system in m; ; has no non-zero solutions in Q(x) (~0.4 sec).
> G:=Matrix(2,2,symbol=g) :
> G20 := SymmetricPowerSystem(G,20):
> sol := solve(convert(G20.V, set)):
m sol =0 = g, =0, therefore |, has only algebraic solutions.
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Future work and summary
0

DY/Z-like numbers

Zagier's problem

Find (a, 5) € Q* x Q* such that u, - (a), -

(B)n-" € Z for some vy € Z*.

(X)n=x-(x+1)---(x+n-1).

# u v ODE order degree || # u v ODE order  degree
2 120 f, | 19/60 49/60 4 155520
4 120 gn | 19/60 59/60 4 46080
¢ | 1/5 4/5 2 120 h, | 29/60 49/60 4 46080
d, | 7/30 9/10 4 155520 || i, | 29/60 59/60 4 155520
en | 9/10 17/30 4 155520

Theorem (Bostan, Weil, Y., 2023)

The sequences

9

,(€n)n>0, - - -, (in)n>0 are solutions to Zagier's problem.

m Estimates for degrees based on numerical monodromy group computations.

m Proof of algebraicity: Done:

, bn, cn. In progress: dp, en, fn, Gn, hn, in-
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Future work and summary
°

m Both sequences and have algebraic generating functions.
m Seven more sequences are solutions to Zagier's problem.

m Differential Galois theory allows efficient proving that D-finite series is algebraic.
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Bonus: explicit solution for > ., a,x"

We saw that ano x" is a solution of
q2(x)y" (x) + q1(x)y'(x) + qo(x)y(x) = 0, where (1)
g2(x) = 5x(302400x — 31)(373248000x2 4 216000x + 1),
q1(x) = 1354442342400000x> + 64571904000x> — 61473600x — 31,
go(x) = 300(902961561600x2 — 240974784x — 4991).

Maple's dsolve(deq) shows that every solution of (1) is a linear combination of

—1/60 11/60 pi(x) 19/60 31/60 p;(x)
<o F; P d <o F; :
n(x) 2 1[ 23 'm0 7" 1) -2h 4/3 " pa(x) )
where 2F1[acb;x} is the Gaussian hypergeometric function

2 F1 [a b:X] =y (@O X*T (u)j =u(u+1)--(u+j—-1)
c n—0 (c)n n! 15/15



Bonus: Integrality of the sequences

m Recall:
up—3 + 20 (4500n2 — 18900n + 19739) up—2 + 80352000n(5n — 1)(5n — 2)(5n — 4)up+
+25 (2592000n4 — 16588800n° + 39118320n% — 39189168n + 14092603) up—1 =0,

with initial terms up = 1, u; = —161/(219.3%) and uy = 26605753/(223 - 312 . 52).
m In [Dubrovin, Yang, Zagier, 2022] proven:

Fg/:z . (1)3n s
1025 sl(5n—2s)!"

m Count primes a /a Legendre:
(%)3,,_5 (2)n(B)n
s!(5n — 2s)!
and for (a, 3) in the presented table.

€ Z[1/30] for s,n € N,
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Bonus: Origin of (¢,)n>0

m For a simple Lie-algebra (g, [-,]) [Bertola, Dubrovin, Yang, 2015] define the
so-called topological ordinary differential equation
d
d)\M = [M,A],
where M = M(X) and A = I + AE_y, for a principal nilpotent element
Iy =37 ; Ei and (normalized) E_g € g_g.
m For g = sl,+1(C) one finds

A= (?\ Ié7> , In is the n x n identity matrix.

and the (normalized) (dominant) ODE reads
64800000x>(x + 155)y ™) (x) + (x> — 1220x + 623875)y(x) + 7200(10x> + 3209x + 133920)y’ (x)+
18000x(5x> + 6091x + 1874880)y” (x) -+ 120600007 (18x + 3565)y"" (x) = 0

" . . .
m Then ano cpx™ is the unique power series solution. 151
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