The generating function of DYZ-like numbers is algebraic ${ }^{1}$ FoCM23

Sergey Yurkevich
Inria Saclay and University of Vienna

20th of June, 2023

[^0]
Two sequences

$$
\begin{aligned}
& \left(a_{n}\right)_{n \geq 0}=(1,-48300,7981725900,-1469166887370000, \ldots) \\
& \left(b_{n}\right)_{n \geq 0}=(1,-144900,88464128725,-62270073456990000, \ldots)
\end{aligned}
$$

Origin of a_{n} and b_{n}

- In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:
$u_{n-3}+20\left(4500 n^{2}-18900 n+19739\right) u_{n-2}+80352000 n(5 n-1)(5 n-2)(5 n-4) u_{n}+$ $+25\left(2592000 n^{4}-16588800 n^{3}+39118320 n^{2}-39189168 n+14092603\right) u_{n-1}=0$, with initial terms $u_{0}=1, u_{1}=-161 /\left(2^{10} \cdot 3^{5}\right)$ and $u_{2}=26605753 /\left(2^{23} \cdot 3^{12} \cdot 5^{2}\right)$.
■ Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola et al., 2015].

Origin of a_{n} and b_{n}

- In Arithmetic and Topology of Differential Equations, 2018 by Don Zagier:
$u_{n-3}+20\left(4500 n^{2}-18900 n+19739\right) u_{n-2}+80352000 n(5 n-1)(5 n-2)(5 n-4) u_{n}+$ $+25\left(2592000 n^{4}-16588800 n^{3}+39118320 n^{2}-39189168 n+14092603\right) u_{n-1}=0$, with initial terms $u_{0}=1, u_{1}=-161 /\left(2^{10} \cdot 3^{5}\right)$ and $u_{2}=26605753 /\left(2^{23} \cdot 3^{12} \cdot 5^{2}\right)$.
- Recursion comes from physics: integral over a moduli space ("topological ODE") [Bertola et al., 2015].
Problem (Zagier, 2018)
Find $(\alpha, \beta) \in \mathbb{Q}^{*} \times \mathbb{Q}^{*}$ such that $u_{n} \cdot(\alpha)_{n} \cdot(\beta)_{n} \cdot \gamma^{n} \in \mathbb{Z}$ for some $\gamma \in \mathbb{Z}^{*}$.

$$
(x)_{n}:=x \cdot(x+1) \cdots(x+n-1) .
$$

- [Yang and Zagier]: $a_{n}=u_{n} \cdot(3 / 5)_{n} \cdot(4 / 5)_{n} \cdot\left(2^{10} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$,
- [Dubrovin and Yang]: $b_{n}=u_{n} \cdot(2 / 5)_{n} \cdot(9 / 10)_{n} \cdot\left(2^{12} \cdot 3^{5} \cdot 5^{4}\right)^{n} \in \mathbb{Z}$.

Mystery of a_{n} and b_{n}

■ "Yang and I found a formula showing that the numbers a_{n} are integers [...]" "Dubrovin and Yang found that the numbers b_{n} are also integral and that in this case the generating function [...] is actually algebraic!"

- "So this is a very mysterious example" - [Zagier, 2018]

■ "My presumed arithmetic intuition [...] was entirely broken" - [Wadim Zudilin]

Mystery of a_{n} and b_{n}

- "Yang and I found a formula showing that the numbers a_{n} are integers [...]" "Dubrovin and Yang found that the numbers b_{n} are also integral and that in this case the generating function [...] is actually algebraic!"
- "So this is a very mysterious example" - [Zagier, 2018]
- "My presumed arithmetic intuition [...] was entirely broken" - [Wadim Zudilin]

Problem

Investigate the nature of $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0}$ and similar sequences.

Theorem (Bostan, Weil, Y.)

The generating functions of both $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ are algebraic.

Theorem (Bostan, Weil, Y.)

Seven more solutions to Zagier's problem: $\left(c_{n}\right)_{n \geq 0}, \ldots,\left(i_{n}\right)_{n \geq 0} \in \mathbb{Z}$.

Definitions and interactions

A sequence $\left(u_{n}\right)_{n \geq 0}$ is P -finite, if it satisfies a linear recurrence with polynomial coefficients:

$$
c_{r}(n) u_{n+r}+\cdots+c_{0}(n) u_{n}=0
$$

$$
u_{n}=\binom{2 n}{n} \text { satisfies }
$$

$$
(n+1) u_{n+1}-(2+4 n) u_{n}=0
$$

Definitions and interactions

A power series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is D-finite if it satisfies a linear differential equation with polynomial coefficients:

$$
p_{n}(x) f^{(n)}(x)+\cdots+p_{0}(x) f(x)=0
$$

This equation can be rewritten: $L \cdot f=0$,

$$
L=p_{n}(x) \partial^{n}+\cdots+p_{0}(x) \in \mathbb{Q}(x)[\partial]
$$

$$
\text { where } \partial:=\frac{\mathrm{d}}{\mathrm{~d} x} \text {. }
$$

$$
\sqrt{1-x}+\sqrt{1+x} \text { satisfies }
$$

$$
4\left(x^{2}-1\right) f^{\prime \prime}(x)+4 x f^{\prime}(x)-f(x)=0
$$

$$
L=4\left(x^{2}-1\right) \partial^{2}+4 x \partial-1
$$

Definitions and interactions

A series $f(x) \in \mathbb{Q} \llbracket x \rrbracket$ is a Diagonal if there exists a rational function
$R=\sum_{i_{1}, \ldots, i_{n} \geq 0} c_{i_{1}, \ldots, i_{n}} t_{1}^{i_{1}} \cdots t_{n}^{i_{n}} \in \mathbb{Q}\left(t_{1}, \ldots, t_{n}\right)$ such that

$$
\begin{gathered}
f(x)=\operatorname{Diag}(R):=\sum_{k \geq 0} c_{k, \ldots, k} x^{k} \\
\operatorname{Diag} \frac{1}{1-t_{1}-t_{2}}=\operatorname{Diag} \sum_{i, j \geq 0}\binom{i+j}{j} t_{1}^{i} t_{2}^{j} \\
=\sum_{k \geq 0}\binom{2 k}{k} x^{k}=\frac{1}{\sqrt{1-4 x}}
\end{gathered}
$$

Back to a_{n} and b_{n}

- $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ are \mathbf{P}-finite sequences \Rightarrow generating functions are \mathbf{D}-finite.

$$
\begin{aligned}
& L_{a}=1800 x(7 x-62)\left(x^{2}+50 x+20\right) \partial^{2}+720\left(42 x^{3}+173 x^{2}-14230 x-620\right) \partial \\
&+6048 x^{2}-139453 x-249550 \in \mathbb{Q}(x)[\partial], \\
& \begin{aligned}
L_{b}=90000 x^{3} & (2911 x+310)\left(x^{2}+50 x+20\right) \partial^{4} \\
& +18000 x^{2}\left(154283 x^{3}+5185005 x^{2}+1675710 x+142600\right) \partial^{3} \\
& +50 x\left(147290778 x^{3}+2740219655 x^{2}+566777510 x+37497600\right) \partial^{2} \\
& +5\left(919899288 x^{3}+5629046605 x^{2}+1348939210 x+10713600\right) \partial \\
& +18\left(13937868 x^{2}-1076845 x+1247750\right) \in \mathbb{Q}(x)[\partial] .
\end{aligned}
\end{aligned}
$$

■ The generating functions of $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ solve $L_{a} \cdot y=0$ and $L_{b} \cdot y=0$.

Main problem

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?

Main problem

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.

Main problem

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.
■ Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].

Main problem

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.
■ Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].
■ Solved in theory [Singer, 1979, 2014] - but usually not applicable in practice.

Main problem

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.

- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].

■ Solved in theory [Singer, 1979, 2014] - but usually not applicable in practice.

- Solved for hypergeometric functions [Schwarz, 1873], [Beukers,Heckman, 1989].

Main problem

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.

- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].

■ Solved in theory [Singer, 1979, 2014] - but usually not applicable in practice.

- Solved for hypergeometric functions [Schwarz, 1873], [Beukers,Heckman, 1989].

■ Disproving algebraicity often easier in practice [Flajolet, 1987], [Bostan, 2017].

Main problem

Stanley's problem (1980)
Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.

- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].

■ Solved in theory [Singer, 1979, 2014] - but usually not applicable in practice.
■ Solved for hypergeometric functions [Schwarz, 1873], [Beukers, Heckman, 1989].
■ Disproving algebraicity often easier in practice [Flajolet, 1987], [Bostan, 2017].
■ Tests for justifying algebraicity based on conjectures or numerics:
■ Grothendieck-Katz conjecture (integrality of coefficients \leftrightarrow algebraic solutions)

- Monodromy group computation (cardinality of orbit = algebraicity degree)

Main problem

Stanley's problem (1980)
Given a D-finite series, how to prove or disprove that it is algebraic?
■ Guess \& Prove approach - but algebraicity degree can be arbitrarily high.

- Algorithms for rational solutions of linear ODE [Liouville, 1833; Barkatou, 1998].

■ Solved in theory [Singer, 1979, 2014] - but usually not applicable in practice.

- Solved for hypergeometric functions [Schwarz, 1873], [Beukers,Heckman, 1989].
- Disproving algebraicity often easier in practice [Flajolet, 1987], [Bostan, 2017].

■ Tests for justifying algebraicity based on conjectures or numerics:
■ Grothendieck-Katz conjecture (integrality of coefficients \leftrightarrow algebraic solutions)

- Monodromy group computation (cardinality of orbit = algebraicity degree)
- Applied differential Galois theory can prove algebraicity in practice.

Proving transcendence of D-finite functions

Stanley's problem (1980)

Given a D-finite series, how to prove or disprove that it is algebraic?
Some useful properties of algebraic functions $f(x)=\sum_{n \geq 0} u_{n} x^{n}$:
1 Coefficient sequence is globally bounded: $u_{n} w^{n} \in \mathbb{Z}$.

$$
\log (1-x) \notin \overline{\mathbb{Q}(x)}
$$

2 Special asymptotics: $u_{n}=\frac{\rho^{n} n^{\alpha}}{\Gamma(\alpha+1)} \sum_{i=1}^{n} C_{i} \omega_{i}^{n}+O\left(\rho^{n} n^{\beta}\right) . \quad \sum_{n \geq 0}\binom{2 n}{n}^{2} x^{n} \notin \overline{\mathbb{Q}}(x)$
3 Evaluation at algebraic numbers: $f(\alpha) \in \overline{\mathbb{Q}}$ for $\alpha \in \overline{\mathbb{Q}}$.

$$
\exp (x) \notin \overline{\mathbb{Q}(x)}
$$

4 Minimal ODE has basis of solutions with no log's.

André-Christol conjecture: $1+4$ also sufficient.

Differential Galois theory: proving algebraicity

■ $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.

- Picard-Vessiot extension: $K=k(U)$, where U is a fundamental solution matrix.
- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$
G:=\operatorname{Aut}_{\partial}(K / k)=\left\{\sigma \in \operatorname{Aut}(K):\left.\sigma\right|_{k} \equiv \operatorname{id}_{k} \text { and } \sigma \circ \partial \equiv \partial \circ \sigma\right\} .
$$

- G is a linear algebraic subgroup of $\mathrm{GL}_{n}(\overline{\mathbb{Q}})$.
- G stabilizes the ideal of differential relations between solutions.

Differential Galois theory: proving algebraicity

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.
- Picard-Vessiot extension: $K=k(U)$, where U is a fundamental solution matrix.
- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$
G:=\operatorname{Aut}_{\partial}(K / k)=\left\{\sigma \in \operatorname{Aut}(K):\left.\sigma\right|_{k} \equiv \operatorname{id}_{k} \text { and } \sigma \circ \partial \equiv \partial \circ \sigma\right\} .
$$

- G is a linear algebraic subgroup of $\mathrm{GL}_{n}(\overline{\mathbb{Q}})$.

■ G stabilizes the ideal of differential relations between solutions. Moreover:

Theorem (Kolchin, 1948)

$L \cdot y=0$ has a basis of algebraic solutions if and only if G is finite.

Differential Galois theory: proving algebraicity

$\square L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.
■ Picard-Vessiot extension: $K=k(U)$, where U is a fundamental solution matrix.

- The differential Galois group G is the group of field automorphisms of K which commute with the derivation and leave all elements of k invariant:

$$
G:=\operatorname{Aut}_{\partial}(K / k)=\left\{\sigma \in \operatorname{Aut}(K):\left.\sigma\right|_{k} \equiv \operatorname{id}_{k} \text { and } \sigma \circ \partial \equiv \partial \circ \sigma\right\}
$$

- G is a linear algebraic subgroup of $\mathrm{GL}_{n}(\overline{\mathbb{Q}})$.

■ G stabilizes the ideal of differential relations between solutions. Moreover:

Theorem (Kolchin, 1948)

$L \cdot y=0$ has a basis of algebraic solutions if and only if G is finite.
■ In practice G is very difficult to compute [Hrushovski, 2002], [Feng, 2015], [van der Hoeven, 2007], [Amzallag, Minchenko, Pogudin, 2018], [Sun, 2019].

Differential Galois theory: proving algebraicity

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.
- G is the differential Galois group.

Differential Galois theory: proving algebraicity

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.
- G is the differential Galois group.

■ Galois-Lie algebra $\mathfrak{g}:=\operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id.

Differential Galois theory: proving algebraicity

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.
- G is the differential Galois group.

■ Galois-Lie algebra $\mathfrak{g}:=\operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id.
■ \mathfrak{g} measures the transcendence of K over k :
Theorem (Kolchin, 1948)
If K is the Picard-Vessiot extension of $Y^{\prime}=A(x) Y$ and $\mathfrak{g}=\operatorname{Lie}(G)$, then

$$
\operatorname{dim}_{\mathbb{C}}(G)=\operatorname{dim}_{\mathbb{C}}(\mathfrak{g})=\operatorname{trdeg}(K / k)
$$

Differential Galois theory: proving algebraicity

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$, where $A(x) \in M^{n \times n}(k)$ and $k=\overline{\mathbb{Q}}(x)$.

■ G is the differential Galois group.
■ Galois-Lie algebra $\mathfrak{g}:=\operatorname{Lie}(G)$: Lie algebra of G, i.e. the tangent space of G at id.
■ \mathfrak{g} measures the transcendence of K over k :

Theorem (Kolchin, 1948)

If K is the Picard-Vessiot extension of $Y^{\prime}=A(x) Y$ and $\mathfrak{g}=\operatorname{Lie}(G)$, then

$$
\operatorname{dim}_{\mathbb{C}}(G)=\operatorname{dim}_{\mathbb{C}}(\mathfrak{g})=\operatorname{trdeg}(K / k)
$$

■ Theory and algorithm for computing \mathfrak{g} [Barkatou, Cluzeau, Di Vizio, Weil, 2020].
■ Idea: Compute symmetric powers of L and find rational solutions of them.
These solutions yield information for \mathfrak{g} via solving a linear system.

Toy example

- The operator $L=\left(4 x^{2}-4\right) \partial^{2}+4 x \partial-1$ has a basis of algebraic solutions:

$$
\sqrt{1+x}+\sqrt{1-x} \text { and } \sqrt{1+x}-\sqrt{1-x}
$$

- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$ where $A(x)=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{4 x^{2}-4} & \frac{-4 x}{4 x^{2}-4}\end{array}\right)$.

Toy example

- The operator $L=\left(4 x^{2}-4\right) \partial^{2}+4 x \partial-1$
- $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$ where $A(x)=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{4 x^{2}-4} & \frac{-4 x}{4 x^{2}-4}\end{array}\right)$.
- If $Y=\left(y_{1}, y_{2}\right)^{t}$ is a solution to $Y^{\prime}=A(x) Y$ then $Y=\left(y_{1}^{2}, 2 y_{1} y_{2}, y_{2}^{2}\right)^{t}$ is a solution to the symmetric square system $Y^{\prime}=A^{(2)}(x) Y$, where now

$$
A^{(2)}(x)=\frac{1}{4\left(x^{2}-1\right)}\left(\begin{array}{ccc}
0 & 4 x^{2}-4 & 0 \\
2 & -4 x & 8 x^{2}-8 \\
0 & 1 & -8 x
\end{array}\right) .
$$

Toy example

- The operator $L=\left(4 x^{2}-4\right) \partial^{2}+4 x \partial-1$

■ $L \cdot y=0$ is equivalent to $Y^{\prime}=A(x) Y$ where $A(x)=\left(\begin{array}{cc}0 & 1 \\ \frac{1}{4 x^{2}-4} & \frac{-4 x}{4 x^{2}-4}\end{array}\right)$.

- If $Y=\left(y_{1}, y_{2}\right)^{t}$ is a solution to $Y^{\prime}=A(x) Y$ then $Y=\left(y_{1}^{2}, 2 y_{1} y_{2}, y_{2}^{2}\right)^{t}$ is a solution to the symmetric square system $Y^{\prime}=A^{(2)}(x) Y$, where now

$$
A^{(2)}(x)=\frac{1}{4\left(x^{2}-1\right)}\left(\begin{array}{ccc}
0 & 4 x^{2}-4 & 0 \\
2 & -4 x & 8 x^{2}-8 \\
0 & 1 & -8 x
\end{array}\right) .
$$

■ It has rational solutions! $F_{1}=\left(4 x, 4, x /\left(x^{2}-1\right)\right)^{t}, F_{2}=\left(-4,0,1 /\left(x^{2}-1\right)\right)^{t}$.
■ If $M \in \mathfrak{g}^{(2)}$ then $M F=0$ and M comes from a symmetric square. I.e. M satisfies

$$
\left(\begin{array}{ccc}
2 m_{1,1} & m_{1,2} & 0 \\
2 m_{2,1} & m_{1,1}+m_{2,2} & 2 m_{1,2} \\
0 & m_{2,1} & 2 m_{2,2}
\end{array}\right) \cdot F_{\ell}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \quad m_{i, j} \in \mathbb{Q}(x), \ell=1,2 .
$$

■ The only solution is $m_{i, j}=0$. Hence $\mathfrak{g}^{(2)}=\mathfrak{g}=0$. All solutions of L are algebraic.

The generating sequence of $\left(b_{n}\right)_{n}$ is algebraic (known to Dubrovin \& Yang)

- For L_{b} same method as in the toy example works.
- $L_{b} \cdot y=0$ equivalent to $Y^{\prime}=A(x) Y$ for $A(x) \in M^{4 \times 4}(\mathbb{Q}(x))$.
- The fifth symmetric power $Y^{\prime}=A^{(5)}(x) Y$ has rational solutions.

$$
>A 5:=\operatorname{SymmetricPowerSystem}(A, 5):
$$

- $A^{(5)}(x) \in M^{N \times N}(\mathbb{Q}(x))$, where $N=\binom{4+5-1}{4-1}=56$.

■ Finding the rational solutions takes $\approx 2 \mathrm{~min}$ on a regular PC . > V:=RationalSolutions([A5], [x]):

- The corresponding system in $m_{i, j}$ has no non-zero solutions in $\mathbb{Q}(x)(\approx 15 \mathrm{sec})$.
> G:=Matrix (4,4, symbol=g):
> G5 := SymmetricPowerSystem (G,5):
> sol := solve(convert(G5.V, set)):

■ sol $=0 \Rightarrow g_{b}=0$, therefore L_{b} has only algebraic solutions.

The generating sequence of $\left(a_{n}\right)_{n}$ is algebraic (new)

- For the generating function of $\left(a_{n}\right)_{n \geq 0}$ same method as for $\left(b_{n}\right)_{n \geq 0}$ works.
- The 20th symmetric power of L_{a} has rational solutions ($\approx 4 \mathrm{sec}$).

$$
\begin{aligned}
& \text { > A20 := SymmetricPowerSystem }(\mathrm{A}, 20): \\
& \text { > V:=RationalSolutions([A20], }[\mathrm{x}]):
\end{aligned}
$$

- $A^{(20)} \in M^{N \times N}(\mathbb{Q}(x))$, where $N=\binom{2+20-1}{2-1}=21$.
- The corresponding system in $m_{i, j}$ has no non-zero solutions in $\mathbb{Q}(x)(\approx 0.4 \mathrm{sec})$.

$$
\begin{array}{r}
\text { > G:=Matrix }(2,2, \text { symbol=g): } \\
>\text { G20 }:=\text { SymmetricPowerSystem }(G, 20): \\
>\text { sol }:=\text { solve(convert(G20.V, set)): }
\end{array}
$$

■ sol $=0 \Rightarrow \mathfrak{g}_{a}=0$, therefore L_{a} has only algebraic solutions.

DYZ-like numbers

Zagier's problem

Find $(\alpha, \beta) \in \mathbb{Q}^{*} \times \mathbb{Q}^{*}$ such that $u_{n} \cdot(\alpha)_{n} \cdot(\beta)_{n} \cdot \gamma^{n} \in \mathbb{Z}$ for some $\gamma \in \mathbb{Z}^{*}$.

$$
(x)_{n}:=x \cdot(x+1) \cdots(x+n-1) .
$$

$\#$	u	v	ODE order	degree	$\#$	u	v	ODE order	degree
a_{n}	$3 / 5$	$4 / 5$	2	120	f_{n}	$19 / 60$	$49 / 60$	4	155520
b_{n}	$2 / 5$	$9 / 10$	4	120	g_{n}	$19 / 60$	$59 / 60$	4	46080
c_{n}	$1 / 5$	$4 / 5$	2	120	h_{n}	$29 / 60$	$49 / 60$	4	46080
d_{n}	$7 / 30$	$9 / 10$	4	155520	i_{n}	$29 / 60$	$59 / 60$	4	155520
e_{n}	$9 / 10$	$17 / 30$	4	155520					

Theorem (Bostan, Weil, Y., 2023)
The sequences $\left(a_{n}\right)_{n \geq 0},\left(b_{n}\right)_{n \geq 0},\left(c_{n}\right)_{n \geq 0}, \ldots,\left(i_{n}\right)_{n \geq 0}$ are solutions to Zagier's problem.

- Estimates for degrees based on numerical monodromy group computations.

■ Proof of algebraicity: Done: a_{n}, b_{n}, c_{n}. In progress: $d_{n}, e_{n}, f_{n}, g_{n}, h_{n}, i_{n}$.

Summary

- Both sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ have algebraic generating functions.

■ Seven more sequences are solutions to Zagier's problem.

■ Differential Galois theory allows efficient proving that D-finite series is algebraic.

Bonus: explicit solution for $\sum_{n>0} a_{n} x^{n}$

We saw that $\sum_{n \geq 0} a_{n} x^{n}$ is a solution of

$$
\begin{align*}
& q_{2}(x) y^{\prime \prime}(x)+q_{1}(x) y^{\prime}(x)+q_{0}(x) y(x)=0, \quad \text { where } \tag{1}\\
& q_{2}(x)=5 x(302400 x-31)\left(373248000 x^{2}+216000 x+1\right), \\
& q_{1}(x)=1354442342400000 x^{3}+64571904000 x^{2}-61473600 x-31, \\
& q_{0}(x)=300\left(902961561600 x^{2}-240974784 x-4991\right)
\end{align*}
$$

Maple's dsolve (deq) shows that every solution of (1) is a linear combination of

$$
u_{1}(x) \cdot{ }_{2} F_{1}\left[\begin{array}{c}
-1 / 6011 / 60 ; \frac{p_{1}(x)}{p_{2}(x)} \\
2 / 3
\end{array}\right] \quad \text { and } \quad u_{2}(x) \cdot{ }_{2} F_{1}\left[\begin{array}{c}
19 / 6031 / 60 ; \frac{p_{1}(x)}{p_{2}(x)} \\
4 / 3
\end{array}\right]
$$

where ${ }_{2} F_{1}\left[\begin{array}{cc}a & b \\ c & ;\end{array}\right]$ is the Gaussian hypergeometric function

$$
{ }_{2} F_{1}\left[\begin{array}{c}
a b \\
c
\end{array} ; x\right]:=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}, \quad(u)_{j}:=u(u+1) \cdots(u+j-1)
$$

Bonus: Integrality of the sequences

- Recall:

$$
\begin{aligned}
u_{n-3}+ & 20\left(4500 n^{2}-18900 n+19739\right) u_{n-2}+80352000 n(5 n-1)(5 n-2)(5 n-4) u_{n}+ \\
& +25\left(2592000 n^{4}-16588800 n^{3}+39118320 n^{2}-39189168 n+14092603\right) u_{n-1}=0
\end{aligned}
$$

$$
\text { with initial terms } u_{0}=1, u_{1}=-161 /\left(2^{10} \cdot 3^{5}\right) \text { and } u_{2}=26605753 /\left(2^{23} \cdot 3^{12} \cdot 5^{2}\right)
$$

■ In [Dubrovin, Yang, Zagier, 2022] proven:

$$
u_{n}=6^{-5 n} \cdot \sum_{s=0}^{5 n / 2} \frac{(-9)^{s}}{10^{2 s}} \cdot \frac{\left(\frac{1}{5}\right)_{3 n-s}}{s!(5 n-2 s)!}
$$

- Count primes à la Legendre:

$$
\frac{\left(\frac{1}{5}\right)_{3 n-s}(\alpha)_{n}(\beta)_{n}}{s!(5 n-2 s)!} \in \mathbb{Z}[1 / 30] \quad \text { for } s, n \in \mathbb{N}
$$

and for (α, β) in the presented table.

Bonus: Origin of $\left(c_{n}\right)_{n \geq 0}$

■ For a simple Lie-algebra ($\mathfrak{g},[\cdot, \cdot]$) [Bertola, Dubrovin, Yang, 2015] define the so-called topological ordinary differential equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \lambda} M=[M, \Lambda]
$$

where $M=M(\lambda)$ and $\Lambda=I_{+}+\lambda E_{-\theta}$, for a principal nilpotent element $I_{+}=\sum_{i=1}^{n} E_{i}$ and (normalized) $E_{-\theta} \in \mathfrak{g}_{-\theta}$.
■ For $\mathfrak{g}=\operatorname{sl}_{n+1}(\mathbb{C})$ one finds

$$
\Lambda=\left(\begin{array}{cc}
0 & I_{n} \\
\lambda & 0
\end{array}\right), \quad I_{n} \text { is the } n \times n \text { identity matrix. }
$$

and the (normalized) (dominant) ODE reads

$$
\begin{array}{r}
64800000 x^{3}(x+155) y^{(i)}(x)+\left(x^{2}-1220 x+623875\right) y(x)+7200\left(10 x^{2}+3209 x+133920\right) y^{\prime}(x)+ \\
18000 x\left(5 x^{2}+6091 x+1874880\right) y^{\prime \prime}(x)+12960000 x^{2}(18 x+3565) y^{\prime \prime \prime}(x)=0
\end{array}
$$

- Then $\sum_{n \geq 0} c_{n} x^{n}$ is the unique power series solution.

[^0]: ${ }^{1}$ Joint work with Alin Bostan and Jacques-Arthur Weil.

