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Introduction
©00

“An idea which can be used once is a trick.
If it can be used more than once it becomes a method.”

Motivating examples

m Recurrence for Apéry numbers:

n 2 2

k

A, = g <Z> <n : ) satisfies  (n+ 1)3%\,7 1= (17n2 +17n+5)(2n+ 1)A, — nA, .
k=0

m Generating function of moments:

(GNP

1 14
mp = / XM/ x(1— x)dx  satisfies Z Mtk =coF AL
J0 k>0 3

m Surface area a projection to R3 of the Clifford torus:

/2” /ZW (V2 4 sinv) du dv
o Jo (1+2t(v/2+sinv)cosu+ t2(3 4 2v/2sinv))2
4/272 (1 — t2) _% _ 4t
=————52f S
(t2—6t+1) 1 (1—1t)
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“... with irritating speed he showed that indeed
the sequence satisfies the recurrence ...”

Algorithmic proofs

n 2 2
k
Ar= <”> <”+ > satisfies  (n+1)%4, 1 = (17n2+17n+5)(2n+1)A,—n3A, 1.

k
k=0

k

=ian,k
> Zeilberger(a, n, k, N); finds in < 0.02 seconds:

L= (n+2)*N?— (17n* +51n+ 39)(2n + 3)N 4 (n + 1)* and
C = (k® —3/2k —2n* —6n — 4)k*(16n +24)/(k —n—1)/(k — n — 2),

with the property that (N - a, x == apr14 and K- a, = ap 4+1):
2 2 2 2

n n—+ k n n—+ k
c () () =m0 () ()

Sum over k from 0 to n and conclude.
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“... try differentiating under the integral sign,
and often it worked...”

Algorithmic proofs

<w

B ——— 14 272
m, = '/0 XM/ x(1— x) dx  satisfies Z mktk =-F %3 St - m
=:fp(x) k=0

> creative_telescoping(f,n::shift,x::diff); finds in < 0.1 seconds:
L=Bn+8)N—-(3n+4) and C(x)=3x(x—1),
with the property that (N - f,(x) = fr11(x)):
L x" /XL = %) = B(C(x) - x"¥/x(1 — )

It follows that L - ,fbl x"/x(1 — x)dx =0 and hence (3n+8)m, 1 = (3n+4)m,.
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s of biomembranes Conclusion

/2”/27r (V2 +sinv) dudv
o Jo (1+2t(v/2+sinv)cosu+ t2(3 4 2v/2sinv))2
4272 (1 — t?) -1 -1 4
= o 2F1 ;—2 .
(t2—6t+1) 1 (1—1¢)
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yg 2(2v/2y — y? + 1)xdxdy
v (2vV22x y2 + 22t x%y — tx2y2 — 22 2x — 2t2xy + 2V2ty + t X% — ty? — 2yx + t)2
_4V2r? (1-1?) -1 -1 4

F- ; .
(2—6t+1)7 > 'l 1 (-t
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Algorithmic proofs

y§ 2(2v/2y — y? + 1)xdxdy
v (2\/§ t2x y2 + 22t x2y — t x2y2 — 20/2 t2x — 2t2xy + 22ty + tx2 — t y2 — 2yx + t)2
A ) s )
(12 — 6t +1)° I -
> FindCreativeTelescoping[F, {Der[x], Der[yl}, Der[tl]; finds in 10 seconds:

L=t(32 —1) (9t* — 262+ 1) (3 +1)° 92 + (3t + 1) (720¢% + 162¢° — 192¢* + 38¢% — 1) 9,
+12¢ (3241° + 333t° 4 51¢* — 53t* + 1), and
Ci1, G € Q(x,y, t) with the property that:

L-F=0,C+ fiy(fz.
Therefore it follows that L - gﬁy F = 0. Solving Ly = 0 we find the right-hand side.
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s of biomembranes Conclusion

Definitions and interactions

————— P-recursive/D-finite

A power series f(t) € Q[t] is D-finite
if it satisfies a linear differential equation
with polynomial coefficients:

pa(t)F(£) + - + po(t)f(t) = 0.
This equation can be rewritten: L-f =0,
L= pn(t)0f + -+ po(t) € Q[t][0].
Let (a)y = - (a+1)---(a+n—1).

Then 2F1 |:a b; t} — ZI7>O (‘(923”(1’)7)'17 £n

C

satisfies

t(1—t)f"(t)+(c—(a+b+1)t)f' (t)—abf(t) = 0.
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Definitions and interactions

___————— P-recursive/D-finite

Uniqueness of biomembranes Conclusion

A sequence (up)n>0 is P-recursive, if it
satisfies a linear recurrence with polyno-
mial coefficients:

cr(nunyr + -+ + co(n)u, = 0.
Let ()p=a-(a+1)---(a+n—1).

Then u, = (?Z’;'(.i)!” satisfies

(c+n)(n+1)upt1 — (a+ n)(b+ n)u, = 0.
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Uniqueness of biomembranes

Conclusion

Definitions and interactions

~——— P-recursive/D-finite

\

A power series f(t) € Q[t] is called a
Period function if it is an integral of a
rational function in t and xi,

.., Xpn Over
a semi-algebraic set.
-1
/1 — e2x2
=4 / 1
=4 [
[ Ixd
*4# ()iiZZY: and
1= asay
(e—e*)P+(1—-e*)o+e)-p=0
s 37
o r 2 4
ple) 2¢ " 3¢

André-Bombieri-Katz theorem: A Period function is a G-function [André, 1989].
Bombieri-Dwork conjecture: Any G-function is a Period function.
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Creative Telescoping

Uniqueness of biomembranes Conclusion

Definitions and interactions

———— P-recursive/D-finite

\

A power series f(t) € Q[t] = >, ukt is
called a Diagonal if there exists a rational
function

R = Z CivinX( X € Q(xd, - ., Xn)

yensin>0
such that
f(t) = Diag(R) = Z Ch... k<.

k>0
Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k>0 is a multiple binomial sum.

o 2n P 1
x'yl = ( >t = —
kz);) n v1—4t
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Creative Telescoping

————— P-recursive/D-finite

\

/ \
| e
\ /
nFae /
— exp(t)
1 1 1
Diag =[x =

—X—y x1l—x—t/x

Uniqueness of biomembranes Conclusion

Definitions and interactions

A power series f(t) € Q[t] = >, ukt is
called a Diagonal if there exists a rational
function

R = Z CivinX( X € Q(xd, - ., Xn)

yensin>0
such that
f(t) = Diag(R) = Z Ch... k<.

k>0
Equivalently [Bostan, Lairez, Salvy 2017],
(uk)k>0 is a multiple binomial sum.

1 ¢ dx
20 Jixjme X — X2 — t

NI=

=(1—4t)"
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Definitions and interactions

- /"’/’"/7777’7”"'E‘j'rﬁc\urswe/ D-finite | power series f(t) € Q[t] = >, uxth is

called a Diagonal if there exists a rational
function

i i
. R= E CipoinXy o X € Q(x1, ..., Xn)
\ i1yeesin>0
| |'such that

£(£) = Ding(R) = 3 cur..ut.
k>0
Equivalently [Bostan, Lairez, Salvy 2017],
— o exp(t) (uk)k>0 is a multiple binomial sum.

Christol’s conjecture: A convergent D-finite power series in Z[t] is a Diagonal.
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“Develop computer programs for simplifying
sums that involve binomial coefficients”

Principle of Creative Telescoping

m Goal: Given a Period function or Diagonal, find the annihilating ODE.
m More precisely: Given R € Q(xi,...,x,;t) and closed cycle v C C", find

L= pa(t)07 -+ po(t) € Q[e][dc], such that L- yﬁ Rdx = 0.
Y

= Note: [ Oy Cdx = [87 Cdx = [, Cdx = 0 for any rational function C € Q(x, t).
m So we just need to find
L e Q[t][0¢], and Ci. ..., C, €Q(x1,...,Xn,t), such that
L R=04Ci+-+0xC

Principle of Creative Telescoping

n dkR n
Zpk(t)d—t =0,CG+ - +0,CG = (Z Pk(t)ak) '?ngX =0.
k=0 g

k=0

The telescoper and certificates always exist and can be found algorithmically.
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The AImkvist—ZeiIberger algorithm [1990] “I could never resist a definite integral.”

Input: A hyperexponential function H(t, x), i.e. 9:H/H and 0xH/H € Q(t, x).
Output: A linear differential operator P(t, ;) € Q[t][0¢] and G (¢, x) € Q(t,x), s.t.

P-H=0.(G-H).

Algorithm: Let L = Q(t). For r=0,1,2,... do:
Compute a(t, x) = OxH/H and bi(t,x) = OKH/H for k =0,...,r.

Decide whether the (ordinary, linear, inhomogeneous, parametrized) diff. equation

r
0xG + a(t,x)G = _ cu(t)bi(t,x)
k=0
has a rational solution G € L(x) for some cy(t),...,c(t) € L not all zero.
If found solution in (2), return P = >} _, c,OF and G; else increase r and repeat.
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Creative Telescoping
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Some history of Creative Telescoping ! had peculiar methods of doing integrals.”
Indefinite i i i d ki | i B 1*L
m Indefinite integration/summation and working examples - Kk(k + 1) = nr1

m Sums: [Bernoulli, Fasenmyer, Gosper,...]
m Integrals: [Legendre, Ostrogradsky, Hermite, Picard, Manin, Griffiths, Feynman, ...]

: 1 11
Pl( ) Pz(x)dx / dx - /T2F1{2 2;%
Q Qu(x) J Q(x) Jo /x(1—=x)(1— xt) 1
| Algorlthmlc Creative Telescoping (algorithmic definite summation&integration):
m 1G: brutal elimination: [Fasenmyer, 1947], [Zeilberger, 1990], [Takayama, 1990]
m 2G: rational solutions of linear ODEs: [Zeilberger, 1990], [Almkvist,Zeilberger, 1990],
[Chyzak, 2000], [Koutschan, 2010]
m 3G: 2G + linear algebra + bounds: [Apagodu, Zeilberger, 2005], [Koutschan 2010],
[Chen, Kauers 2012], [Chen, Kauers, Koutschan 2014]
m 4G: based on (Hermite- and generalized Griffiths-Dwork) reduction
[Bostan, Chen, Chyzak, Kauers, Li, Lairez, Salvy, Singer,...]
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“certificate is not needed, its

Creative TeIescoplng and de Rham cohomology existence and regularity are sufficient.”

m Let L=Q(t), f € L[xo,...,xn] =L[x] and v C C" a closed n-cycle.
m Denote by L[x,1/f], = {F € L[x,1/f] : F(Ax) = APF(x),VYA € Q(t)}.
m We wish to compute the differential equation satisfied by

yg F(t;xo,...,xn)dx, where F = a/f* € L[x,1/f]_p_1.
g

m Therefore we wish to find a non-trivial element in
HY" =1L[x,1/f]_n-1/Dr, where Dy = spang({0xC : C € L[x,1/f]_,})
m Generalized Griffiths-Dwork Reduction: F — [F], s.t. ﬁ Fdx =0 < [F]=0.

Theorem [Griffiths 1969, Bostan, Lairez, Salvy 2013]

Assume that L[x]/(0xf, ..., O, f) is finite-dimensional over L. Then H}" is finitely
generated over . Moreover Generalized Griffiths-Dwork Reduction can be used to
compute the (minimal regular) telescoper.
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Creative Telescoping
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“certificate is not needed, its

Issues with singularities: non-regular certificates .sience and regularity are sufficient.”

m Following example originates in [Picard, 1899]:
X—-Yy
— Pe(x)Pe(y)
2Pt(X)
(x = y)(22 = Pe(x)Pt(y))

where P:(u) = u® + t.
m Soone has 1-F = 0xCi + 9, + 0,C3, however:

F =

2P:(y)
(x = y)(2% = Pe(x)Pe(y))

3(x% + y?)z

= Oy (x = y)(22 = Pe(x)Pe(y))’

+ 0,

+ 0,

yngxdydz #0 for some v C C3.
v

m Conclusion: Certificates are important.
A certificate is called regular if it has no other poles than F.
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Uniqueness of biomembranes
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“Why do all humans have the same
biconcave shaped red blood cells?”
m Canham model predicts shape of biomembranes like blood cells [Canham, 1970)].
m The model asks to minimize the Willmore energy

W(S) = / H?dA, (H is mean the curvature) |§
s

Motivation and Introduction

over orientable closed surfaces S C R3 with genus g, area Ag and volume V5.

m Existence studied excessively, e.g.: [Schygulla, 2012], [Marques, Neves 2014].
Uniqueness hardly ever addressed mathematically [Yu, Chen, 2021].

m Note: W(S) is scaling invariant, so minimizing given Ag and V} is equivalent to
minimizing given the isoperimetric ratio:

J6Vo
VAo

Is the minimizer of W(S) with prescribed genus g and isoperimetric ratio ¢ unique?

Lo = 7/® € (0,1].
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Uniqueness of biomembranes
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Thecaseof g=0o0rg=1

Conjecture 1 [Yu, Chen, 2021]

Let g € {0,1}, 1o € (0,1). Then the Canham problem has a unique solution, moreover
when g = 0 the unique solution is a surface of revolution;
when g =1 and ¢p € (0, 7) then the unique solution is a surface of revolution;

B when g =1 and «g € [7,1) then the unique solution is a stereographic image into
R3 of the CllfFord torus (Existence: [Marques, Neves 2014]),

3 _
o 25/4\/? ‘ @ O O '

Theorem [Yu&Chen, Melczer&Mezzarobba, Bostan& Y., 2021]

The shape of the projection of the Clifford torus to R3 is uniquely determined by its
isoperimetric ratio. Therefore, part B of Conjecture 1 holds.
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Projections of the (Clifford) torus

m The Clifford torus CT is defined as the following set in S3:
CT = {[cos u,sin u, cos v,sinv]T /v/2: u,v € [0,2n]} C R*
m The set of all shapes of stereographic projections of CT to R3 is parameterized by
{ia,0,0)(T3) - a €0, V2 —1)}, where
Tr = {[(R—i—cos v)cos u, (R + cos v)sinu,sinv]T : u, v € [0, 27r]} CR3

is the torus with minor radius 1 and major radlus R, and iy, ) is the inversion
map about the unit sphere centered at (x,y,z) € ]R3 [Yu, Chen, 2021].
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Uniqueness of biomembranes
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“First guess, then prove.
All great discoveries were made in this style.”

The surface area Ag(t?)R7? and volume Vg(t?)Rn? of i(t0,0)(%) are given by

Computing the isoperimetric ratio

4(1—(R?-1)t?)
(1—2(R? + 1)t + (R2 — 1)22)2

AR(t) =

2(1—(R*—1)t) E ~3 ~3 st 1 4z
(1—2(R2+1)t+ (RZ—1)2t2)2 2 1 3 A= (RZ=1)t)2|

Vr(t) =

Proposition 2

For R > 1 the function Iso%(t?) = 36#% is increasing on t € (0, (R +1)71).
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Proof of Proposition 1 (for V(t))

m Let Q(u,v,r; R t) =1+ 2t(R+ rsinv)cosu +2 (R? + r?> + 2Rrsin v)t?. Then

21 2
t)R? _/ / R + r2sin(v )d dvdr
Q(u,v,r; t)3

:/ yg F(x,y,r; R; t)dxdydr.
0 Jix|=ly|=1

for some F(x,y,r; R; t) € Q(x,y,r,R,t).

m First try: Use creative telescoping on the triple integral:
> FindCreativeTelescoping[F, {Der[x], Der([yl], Der[r]}, Der[t]];

finds Ci. G, G5 € Q(x,y,r, R, t) such that F = 0xC; + 0, C + 0,C5.
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Proof of Proposition 1 (for V(t))

m Let Q(u,v,r; R; t) =1+ 2t(R+ rsinv)cosu +2 (R? + r? + 2Rrsin v)t2. Then

27 27 R
R7r —/ / R+ r* sin(v )d dvdr
Q(u,v,r; t)3

:/ }£ F(x,y,r; R; t)dxdydr.
0 Jix|=lyl=1

for some F(x,y,r; R; t) € Q(x,y,r, R, t).
m Second try: Find a closed form for 957 F dxdy and integrate dr “by hand”.
> FindCreativeTelescoping[F, {Der[x], Der[yl}, Der[t]];

finds L € Q[r, R, t][0¢] and Ci, (o € Q(x,y,r, R, t)st. L-F =0xCi +0,C.
m The common denominator of C; and G is

denom(F)-x-y- (14 2Ry —y?)- H(t,R,r).

14/17



Uniqueness of biomembranes
0000000

Proof of Proposition 1 (for V(t))

m Let Q(u,v,r; R; t) =1+ 2t(R+ rsinv)cosu +2 (R? + r? + 2Rrsin v)t2. Then

27 27 R
R7r —/ / R+ r* sin(v )d dvdr
Q(u,v,r; t)3

:/ }£ F(x,y,r; R; t)dxdydr.
0 Jix|=lyl=1

for some F(x,y,r; R; t) € Q(x,y,r, R, t).
m Second try: Find a closed form for 957 F dxdy and integrate dr “by hand”.
> FindCreativeTelescoping[F, {Der[x], Der[yl}, Der[t]];

finds L € Q[r, R, t][0¢] and Ci, (o € Q(x,y,r, R, t)st. L-F =0xCi +0,C.
m The common denominator of C; and (> has

denom(F) - x-y - (1+2Ry — y?)- H(t,R,r) N~ = 0.
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Proof of Proposition 1 (for V(t))

Uniqueness of biomembranes
0000000

1
Vgr(t)Rx? :/ §£ F(x,y,r; R; t)dxdydr.
0 Jix|=lyl=1

)

=:G(r,R,t)

G(r, R, t) satisfies P>(r, R, t)0? + P1(r, R, t)0: + Po(r, R, t). Solving this ODE:

X art?

G(r,R,t) = Ql‘2F1[2 2

1 (1-2(R2—n)

33 4rt?
+Q : F 2 2; ’
22 1[ 2 (1—t2(R2—r))2

for some (explicit) Q1, @ € Q(r, R, t). Then we also find:

S

/s G(r,R,t)dr =
0 (1-t?2(R?>—5))

Finally: Vr(t)R2 = [} G(r,R,t)dr.

3'3F2

3 3 3 2
22 1o, Ast .
1 (1-t2(R2—5))?
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Proof of Proposition 2

VR(t2)2

For R > 0 the function Iso%(t?) = 36 42y is increasing on t € (0,(R+1)71), with
4(1—(R2—-1)t2 1 _1 4t
AR(t) _ ( ( ) ) -oFy 2 2 2 ,
(1—-2(R?+ 1)t + (R? — 1)%t?)? 1 (1—(R>—-1)t)?
Vilt) = 2(1 - (R? - 1)z)? F -3 -3 @5 +1 at
R T U =2(RT+ 1)t + (RZ—1)22)2 "2 oL A= (R —1)t)?|
First perform the substitution x = 4t2/((1 — (R? — 1)t?)2. It remains to show that:
IR =R I B N o
h(x) = 3F2 (3 -2) X -2F1|: 21 2;x] -(1—}—(:"?2—1)-x)_3'/2
2(R?=2)

is increasing on x € (0,1) for all R > 1.
16 /17
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Proof of Proposition 2

2

3 3 3 -3

-3 -3 _3 41 _1 _1

h(x) =3k | ° 2220 T -gFl[ > 2;x] 1+ (R?P=1)-x)7%?
2(R2-2)

is increasing on x € (0,1) for all R > 1. Note that h = g2 - f3, where

_3 _3 1
3,_—2[ 2 T2 (Rz 2)+ ,X]

1 2(R§—2)

11t
) = T L (R D) e f(X):Z(XJrl)l/z'zFl[ g 2?4 .

Sturm-Liouville theory immediately implies: f(x) is increasing. For g(x) it holds that:

4-g'(x)- (L+x)7* 1+ (RP—1)-x)/* )
3-(1—x2-(R2—1) =Y un(R)x

and

n>0

un+1(R)/un(R) = (2n = 1)(2n + 1) pn41(R)/(4(n + 2)(n + 1) pa(R)). uo(R) = 1, where
pn(R) == 4(R* +4R?> — 4)n® + 6(R* + R?> — 2)n* + (2R* — 13R? + 10)n — 3R>+ 3 > 0.

16/17



Conclusion
°

Summary and conclusion

m Creative Telescoping is a powerful tool for dealing with Period functions.

Implemented versions of Creative Telescoping exist.
They are useful in practice and can solve non-trivial problems.

m The surface area and volume of any stereographic projection to R3? of the
Clifford torus can be expressed in terms of hypergeometric functions.

: . . 1
m The Canham model in genus 1 has a unique solution when Lg € (25—3/47r_2,1).
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